(Re-upload) Infinite Sum With NO Infinite Sum

Let a a and b b be positive integers less than 10.

2 7 + 1 7 2 + 2 7 3 + 1 7 4 + = a 9 + b 9 2 + a 9 3 + b 9 4 + \dfrac{2}{7}+\dfrac{1}{7^2}+\dfrac{2}{7^3}+\dfrac{1}{7^4}+ \cdots=\dfrac{a}{9}+\dfrac{b}{9^2}+\dfrac{a}{9^3}+\dfrac{b}{9^4}+ \cdots

Find a × b a\times b .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 29, 2019

2 7 + 1 7 2 + 2 7 3 + 1 7 4 + = a 9 + b 9 2 + a 9 3 + b 9 4 + ( 2 7 + 1 7 2 ) ( 1 + 1 7 2 + 1 7 4 + ) = ( a 9 + b 9 2 ) ( 1 + 1 9 2 + 1 9 4 + ) ( 15 49 ) ( 49 48 ) = ( 9 a + b 81 ) ( 81 80 ) 9 a + b 80 = 5 16 9 a + b = 25 \begin{aligned} \frac 27 + \frac 1{7^2} + \frac 2{7^3} + \frac 1{7^4} + \cdots & = \frac a9 + \frac b{9^2} + \frac a{9^3} + \frac b{9^4} + \cdots \\ \left(\frac 27 + \frac 1{7^2}\right) \left(1 + \frac 1{7^2} + \frac 1{7^4} + \cdots \right) & = \left(\frac a9 + \frac b{9^2}\right) \left(1 + \frac 1{9^2} + \frac 1{9^4} + \cdots \right) \\ \left(\frac {15}{49}\right) \left(\frac {49}{48} \right) & = \left(\frac {9a + b}{81}\right) \left(\frac {81}{80}\right) \\ \implies \frac {9a+b}{80} & = \frac 5{16} \\ 9a + b & = 25 \end{aligned}

a = 2 \implies a = 2 and b = 7 b=7 for a , b < 10 a, b < 10 . Therefore, a b = 14 ab = \boxed {14} .

2 7 + 1 7 2 + 2 7 3 + = 2 7 ( 1 + 1 7 2 + 1 7 4 + ) + 1 7 2 ( 1 + 1 7 2 + 1 7 4 + ) = ( 1 + 1 7 2 + 1 7 4 + ) ( 2 7 + 1 7 2 ) = 1 1 1 7 2 ( 2 7 + 1 7 2 ) = 5 16 \frac{2}{7}+\frac{1}{7^2}+\frac{2}{7^3}+\dots=\frac{2}{7}(1+\frac{1}{7^2}+\frac{1}{7^4}+\dots)+\frac{1}{7^2}(1+\frac{1}{7^2}+\frac{1}{7^4}+\dots)=(1+\frac{1}{7^2}+\frac{1}{7^4}+\dots)(\frac{2}{7}+\frac{1}{7^2})=\frac{1}{1-\frac{1}{7^2}}(\frac{2}{7}+\frac{1}{7^2})=\frac{5}{16}

similar is done for the right hand side of the equation.

a 9 + b 9 2 a 9 3 + = 1 1 1 9 2 ( a 9 + b 9 2 ) = 9 a + b 80 \frac{a}{9}+\frac{}{}\frac{b}{9^2}\frac{a}{9^3}+\dots=\frac{1}{1-\frac{1}{9^2}}(\frac{a}{9}+\frac{b}{9^2})=\frac{9a+b}{80}

therefore

9 a + b 80 = 5 16 9 a + b = 25 \frac{9a+b}{80}=\frac{5}{16} \implies 9a+b=25

9 25 b , 0 < b < 10 b = 7 a = 2 a . b = 14 9|25-b \ , \ 0<b<10 \implies b=7 \implies a=2 \implies a.b=14

Pepper Mint
Apr 28, 2019

We can discuss the number system(ex. binary) under decimal places. As 102 means 1 × 1 0 2 + 2 1\times 10^2+2 , 10.3 means 1 × 10 + 3 × 1 0 1 1\times 10+3\times 10^{-1} .

The left side of the equation can thus be rewritten as: 0.21212 1 ( 7 ) 0.212121_{(7)}\cdots .

You would know the formula for making fraction form from circulating decimals: c y c l e 1 0 l e n g t h o f c y c l e 1 \dfrac{cycle}{10^{length\ of\ cycle}-1}

Now, we can extend this notation to general systems: ( c y c l e 1 0 l e n g t h o f c y c l e 1 ) ( s y s t e m ) \left(\dfrac{cycle}{10^{length\ of\ cycle}-1}\right)_{(system)}

Given 0.21212 1 ( 7 ) 0.212121_{(7)}\cdots , it is equal to: ( 21 100 1 ) ( 7 ) = 21 66 ( 7 ) = 5 16 \left(\dfrac{21}{100-1}\right)_{(7)}=\dfrac{21}{66}_{(7)}=\dfrac{5}{16}

Our goal is to make circulating 9-system decimals; take a few calculations to make new form: 5 16 = 25 9 2 1 = 27 88 ( 9 ) \dfrac{5}{16}=\dfrac{25}{9^2-1}=\dfrac{27}{88}_{(9)}

Hence, 27 88 ( 9 ) = 0.27272 7 ( 9 ) a = 2 , b = 7 \dfrac{27}{88}_{(9)}=0.272727_{(9)}\cdots \rightarrow a=2,\ b=7 , having our answer 2 × 7 = 14 2\times7=\boxed{14}\ .

The formula you are using, to write a recurring decimal as a fraction, is just the sum to infinity of a GP formula. So the instruction not to use that formula is not reasonable.

Mark Hennings - 2 years, 1 month ago

Log in to reply

Ok, I'll allow the usage of it. I just meant to derive the formula without using the concept of limit.

Pepper Mint - 2 years, 1 month ago

Log in to reply

Students are taught the “recurring decimal to fraction” technique before they are taught limits, in general. However this does leave open the possibility for great confusion over, for example, the value of 0. 9 ˙ 0.\dot{9} . Truly to understand what any infinite decimal means requires the concept of a limit.

Mark Hennings - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...