Reach for the Summit - M-S1-A3

Algebra Level pending

Find the monotonic increasing interval for function y = log 0.5 ( x 2 + 4 x + 4 ) y=\log_{0.5}(x^2+4x+4) .


Reach for the Summit problem set - Mathematics

( , 2 ) (-\infty,-2) ( 2 , 2 ) (-2,2) ( , 2 ) , ( 2 , + ) (-\infty,-2), (2,+\infty) ( 2 , + ) (2,+\infty)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2020

Note that the function y = log 1 2 ( x 2 + 4 x + 4 ) = log 1 2 ( x + 2 ) 2 y = \log_\frac 12 (x^2+4x+4) = \log_\frac 12 (x+2)^2 has a domain of x ( , 2 ) ( 2 , ) x \in (-\infty, -2) \cup (-2, \infty) .

Let us check the gradient of y y .

y = log 1 2 ( x + 2 ) 2 = 2 ln ( x + 2 ) ln 2 d y d x = 2 ln 2 ( x + 2 ) \begin{aligned} y & = \log_\frac 12 (x+2)^2 = \frac {2\ln (x+2)}{- \ln 2} \\ \implies \frac {dy}{dx} & = \frac {-2}{\ln 2(x+2)} \end{aligned}

d y d x > 0 \dfrac {dy}{dx} > 0 and hence function y y is increasing when ( , 2 ) \boxed{(-\infty, -2)} .

y = f ( x ) = log 0.5 ( x 2 + 4 x + 4 ) y=f(x)=\log_{0.5} (x^2+4x+4)

= 2 ln ( x + 2 ) ln 2 =-\dfrac {2\ln (x+2)}{\ln 2}

f ( x ) = 2 ( x + 2 ) ln 2 > 0 \implies f'(x) =-\dfrac {2}{(x+2)\ln 2}>0

x < 2 \implies x<-2

So the required interval is ( , 2 (-\infty, -2 ).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...