Reach for the Summit - M-S1-A4

Calculus Level pending

If a > 0 , f ( x ) = x ln ( x + a ) a>0,\ f(x)=\sqrt{x}-\ln(x+a) is monotonic increasing for x ( 0 , + ) x \in (0,+\infty) , find the minimum value of a a .


Reach for the Summit problem set - Mathematics


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 14, 2020

Given that f ( x ) = x ln ( x + a ) f(x) = \sqrt x - \ln (x+a) , f ( x ) = 1 2 x 1 x + a \implies f'(x) = \dfrac 1{2\sqrt x} - \dfrac 1{x+a} . For f ( x ) f(x) to be monotonic increasing for x ( 0 , ) x \in (0, \infty) , f ( x ) 0 f'(x) \ge 0 for x ( 0 , ) x \in (0, \infty) . Then we have

1 2 x 1 x + a 0 1 2 x 1 x + a x + a 2 x x 2 + 2 a x + a 2 4 x x 2 + ( 2 a 4 ) x + a 2 0 For the inequality to be true, ( 2 a 4 ) 2 4 a 2 0 the discriminant 0. 16 a + 16 0 a 1 \begin{aligned} \frac 1{2\sqrt x} - \frac 1{x+a} & \ge 0 \\ \frac 1{2\sqrt x} & \ge \frac 1{x+a} \\ x+a & \ge 2\sqrt x \\ x^2 + 2ax + a^2 & \ge 4x \\ x^2 + (2a-4) x + a^2 & \ge 0 & \small \blue{\text{For the inequality to be true,}} \\ (2a-4)^2 - 4a^2 & \le 0 & \small \blue{\text{the discriminant }\le 0.} \\ -16a + 16 & \le 0 \\ \implies a & \ge \boxed 1 \end{aligned}

f ( x ) = x ln ( x + a ) f ( x ) = 1 2 x 1 x + a > 0 f(x)=\sqrt x-\ln (x+a)\implies f'(x) =\frac{1}{2\sqrt x}-\frac{1}{x+a}>0

a > 2 x x \implies a>2\sqrt x-x

Therefore minimum of a a is 1 \boxed 1 when x = 1 x=1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...