Reach for the Summit - M-S2-A1

Geometry Level 2

Compare cos ( sin x ) \cos(\sin x) and sin ( cos x ) \sin(\cos x) for x [ 0 , π ] x \in [0,\pi] .


Reach for the Summit problem set - Mathematics

cos ( sin x ) = sin ( cos x ) \cos(\sin x)=\sin(\cos x) cos ( sin x ) > sin ( cos x ) \cos(\sin x)>\sin(\cos x) It depends on x. \textup{It depends on x.} cos ( sin x ) < sin ( cos x ) \cos(\sin x)<\sin(\cos x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 13, 2020

Note that cos ( sin x ) = sin ( π 2 sin x ) \cos (\sin x) = \sin \left(\frac \pi 2- \sin x \right) . Also note that π 2 sin x > cos x \frac \pi 2 - \sin x > \cos x for 0 x π 2 0 \le x \le \frac \pi 2 , because if π 2 sin x > cos x \frac \pi 2 - \sin x > \cos x , then π 2 > sin x + cos x = 2 sin ( x + π 4 ) \frac \pi 2 > \sin x + \cos x = \sqrt 2 \sin \left(x + \frac \pi 4\right) , which is true, as π 2 > 2 sin x + cos x \frac \pi 2 > \sqrt 2 \ge \sin x + \cos x . Therefore cos ( sin x ) = sin ( π 2 sin x ) > sin ( cos x ) \cos (\sin x) = \sin \left(\frac \pi 2- \sin x \right) > \sin (\cos x) for 0 x π 2 0 \le x \le \frac \pi 2 .

For π 2 < x π \frac \pi 2 < x \le \pi , cos ( sin x ) > 0 \cos (\sin x) > 0 , while sin ( cos x ) < 0 \sin (\cos x) < 0 . Again cos ( sin x ) > sin ( cos x ) \cos (\sin x) > \sin (\cos x) .

Therefore cos ( sin x ) > sin ( cos x ) \boxed{\cos(\sin x) > \sin (\cos x)} for 0 x π 0 \le x \le \pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...