Without using a calculator, find the value of:
( sec 5 0 ° + tan 1 0 ° ) ( cos 7 2 π + cos 7 4 π + cos 7 6 π ) ( tan 6 ° tan 4 2 ° tan 6 6 ° tan 7 8 ° )
Let A denote the value. Submit ⌊ 1 0 0 0 0 A ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To prove sec 5 0 ° + tan 1 0 ° = 3 , you could use:
sec 5 0 ° + tan 1 0 °
= sec 5 0 ° + tan ( 9 0 ° − 8 0 ° )
= sec 5 0 ° + cot 8 0 °
= sec 5 0 ° + tan 8 0 ° 1
= sec 5 0 ° + tan ( 1 8 0 ° − 1 0 0 ° ) 1
= sec 5 0 ° − tan 1 0 0 ° 1
= sec 5 0 ° − sin 1 0 0 ° cos 1 0 0 °
= cos 5 0 ° 1 − sin 1 0 0 ° cos 1 0 0 °
= 2 sin 5 0 ° cos 5 0 ° 2 sin 5 0 ° − sin 1 0 0 ° cos 1 0 0 °
= sin 1 0 0 ° 2 sin 5 0 ° − sin 1 0 0 ° cos 1 0 0 °
= sin 1 0 0 ° 1 ( 2 sin 5 0 ° − cos 1 0 0 ° )
= sin 1 0 0 ° 1 ( 2 sin ( 9 0 ° − 4 0 ° ) − cos ( 6 0 ° + 4 0 ° ) )
= sin 1 0 0 ° 1 ( 2 cos 4 0 ° − cos 6 0 ° cos 4 0 ° + sin 6 0 ° sin 4 0 ° )
= sin 1 0 0 ° 1 ( 2 cos 4 0 ° − 2 1 cos 4 0 ° + 2 3 sin 4 0 ° )
= sin 1 0 0 ° 1 ( 2 3 cos 4 0 ° + 2 3 sin 4 0 ° )
= sin 1 0 0 ° 3 ( 2 3 cos 4 0 ° + 2 1 sin 4 0 ° )
= sin 1 0 0 ° 3 ( sin 6 0 ° cos 4 0 ° + cos 6 0 ° sin 4 0 ° )
= sin 1 0 0 ° 3 ⋅ sin ( 6 0 ° + 4 0 ° )
= sin 1 0 0 ° 3 ⋅ sin 1 0 0 °
= 3
Log in to reply
Thanks. But I have not given out. See my solution.
Can u explain how to get the value of each without using calculator ?
Problem Loading...
Note Loading...
Set Loading...
From calculator: sec 5 0 ∘ + tan 1 0 ∘ = 3
From calculator: cos 7 2 π + cos 7 4 π + cos 7 6 π = − 2 1
From calculator: tan 6 ∘ tan 4 2 ∘ tan 6 6 ∘ tan 7 8 ∘ = 1
Therefore the answer is A = 3 ( − 2 1 ) ( 1 ) ≈ − 0 . 8 6 6 0 2 5 4 0 4 . ⟹ ⌊ 1 0 0 0 0 A ⌋ = − 8 6 6 1 .