Reach for the Summit - M-S2-A2

Geometry Level 4

Without using a calculator, find the value of:

( sec 50 ° + tan 10 ° ) ( cos 2 π 7 + cos 4 π 7 + cos 6 π 7 ) ( tan 6 ° tan 42 ° tan 66 ° tan 78 ° ) (\sec 50 \degree + \tan 10 \degree)\left(\cos \dfrac{2 \pi}{7}+\cos \dfrac{4 \pi}{7}+ \cos \dfrac{6 \pi}{7}\right)(\tan 6 \degree \tan 42 \degree \tan 66 \degree \tan 78 \degree)

Let A A denote the value. Submit 10000 A \lfloor 10000A \rfloor .


Reach for the Summit problem set - Mathematics


The answer is -8661.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 14, 2020

From calculator: sec 5 0 + tan 1 0 = 3 \sec 50^\circ + \tan 10^\circ = \sqrt 3

Proof:

sec 5 0 + tan 1 0 = 1 cos 5 0 + cot 8 0 = 1 sin 4 0 + 1 tan ( 6 0 + 2 0 ) Let t = tan 2 0 = 1 + t 2 2 t + 1 3 t 3 + t Then tan 6 0 = 3 t t 3 1 3 t 2 = 3 = 3 + 3 t 3 t 2 + t 3 2 t ( 3 + t ) t 3 = 3 3 t 2 + 3 t 3 = 6 t + 2 3 t 2 2 t ( 3 + t ) = 2 3 t ( 3 + t ) 2 t ( 3 + t ) = 3 \begin{aligned} \sec 50^\circ + \tan 10^\circ & = \frac 1{\cos 50^\circ} + \cot 80^\circ \\ & = \frac 1{\sin 40^\circ} + \frac 1{\tan (60^\circ + 20^\circ)} & \small \blue{\text{Let }t = \tan 20^\circ} \\ & = \frac {1+t^2}{2t} + \frac {1-\sqrt 3 t}{\sqrt 3 + t} & \small \blue{\text{Then }\tan 60^\circ = \frac {3t-t^3}{1-3t^2} = \sqrt 3} \\ & = \frac {\sqrt 3 + 3t - \sqrt 3 t^2 + t^3}{2t(\sqrt 3 +t)} & \small \blue{\implies t^3 = 3\sqrt 3 t^2 + 3t - \sqrt 3} \\ & = \frac {6t + 2\sqrt 3 t^2}{2t(\sqrt 3 +t)} \\ & = \frac {2\sqrt 3 t(\sqrt 3 + t)}{2t(\sqrt 3 +t)} \\ & = \sqrt 3 \end{aligned}

From calculator: cos 2 π 7 + cos 4 π 7 + cos 6 π 7 = 1 2 \cos \frac {2\pi}7 + \cos \frac {4\pi}7 + \cos \frac {6\pi}7 = - \frac 12

Proof: In general k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1} \pi \right) = \frac 12 . Then

cos 2 π 7 + cos 4 π 7 + cos 6 π 7 = cos ( π 2 π 7 ) cos ( π 4 π 7 ) cos ( π 6 π 7 ) = cos 5 π 7 cos 3 π 7 cos π 7 = 1 2 \begin{aligned} \cos \frac {2\pi}7 + \cos \frac {4\pi}7 + \cos \frac {6\pi}7 & = - \cos \left(\pi - \frac {2\pi}7 \right) - \cos \left(\pi - \frac {4\pi}7 \right) - \cos \left(\pi - \frac {6\pi}7 \right) \\ & = - \cos \frac {5\pi}7 - \cos \frac {3\pi}7 - \cos \frac \pi 7 \\ & = - \frac 12 \end{aligned}

From calculator: tan 6 tan 4 2 tan 6 6 tan 7 8 = 1 \tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = 1

Proof: Equation (35): k = 1 ( n 1 ) / 2 tan ( k π n ) = { n if n is odd 1 if n is even \displaystyle \prod_{k=1}^{\lfloor (n-1)/2 \rfloor} \tan \left( \frac {k \pi}n \right) = \begin{cases} \sqrt n & \text{if }n \text{ is odd} \\ 1 & \text{if }n \text{ is even} \end{cases} , where \lfloor \cdot \rfloor denotes the floor function.

tan π 30 tan 7 π 30 tan 11 π 30 tan 13 π 30 = cot 7 π 15 cot 4 π 15 cot 2 π 15 cot π 15 = 1 tan π 15 tan 2 π 15 tan 4 π 15 tan 7 π 15 = tan 3 π 15 tan 5 π 15 tan 6 π 15 k = 1 7 tan k π 15 = tan π 3 k = 1 2 tan k π 5 k = 1 7 tan k π 15 = 3 5 15 = 1 \begin{aligned} \tan \frac \pi {30} \tan \frac {7\pi}{30} \tan \frac {11\pi}{30} \tan \frac {13\pi}{30} & = \cot \frac {7\pi}{15} \cot \frac {4\pi}{15} \cot \frac {2\pi}{15} \cot \frac \pi{15} \\ & = \frac 1{\tan \frac \pi{15} \tan \frac {2\pi}{15} \tan \frac {4\pi}{15} \tan \frac {7\pi}{15}} \\ & = \frac {\tan \frac {3\pi}{15} \tan \frac {5\pi}{15} \tan \frac {6\pi}{15}}{\prod_{k=1}^7 \tan \frac {k \pi}{15}} \\ & = \frac {\tan \frac \pi3 \prod_{k=1}^2 \tan \frac {k\pi}5}{\prod_{k=1}^7 \tan \frac {k \pi}{15}} = \frac {\sqrt 3 \cdot \sqrt 5}{\sqrt{15}} = 1 \end{aligned}

Therefore the answer is A = 3 ( 1 2 ) ( 1 ) 0.866025404 A = \sqrt 3 \left(-\frac 12\right)(1) \approx - 0.866025404 . 10000 A = 8661 \implies \lfloor 10000 A \rfloor = \boxed {-8661} .

To prove sec 50 ° + tan 10 ° = 3 \sec 50° + \tan 10° = \sqrt{3} , you could use:

sec 50 ° + tan 10 ° \sec 50° + \tan 10°

= sec 50 ° + tan ( 90 ° 80 ° ) = \sec 50° + \tan (90° - 80°)

= sec 50 ° + cot 80 ° = \sec 50° + \cot 80°

= sec 50 ° + 1 tan 80 ° = \sec 50° + \frac{1}{\tan 80°}

= sec 50 ° + 1 tan ( 180 ° 100 ° ) = \sec 50° + \frac{1}{\tan (180° - 100°)}

= sec 50 ° 1 tan 100 ° = \sec 50° - \frac{1}{\tan 100°}

= sec 50 ° cos 100 ° sin 100 ° = \sec 50° - \frac{\cos 100°}{\sin 100°}

= 1 cos 50 ° cos 100 ° sin 100 ° = \frac{1}{\cos 50°} - \frac{\cos 100°}{\sin 100°}

= 2 sin 50 ° 2 sin 50 ° cos 50 ° cos 100 ° sin 100 ° = \frac{2 \sin 50°}{2 \sin 50° \cos 50°} - \frac{\cos 100°}{\sin 100°}

= 2 sin 50 ° sin 100 ° cos 100 ° sin 100 ° = \frac{2 \sin 50°}{\sin 100°} - \frac{\cos 100°}{\sin 100°}

= 1 sin 100 ° ( 2 sin 50 ° cos 100 ° ) = \frac{1}{\sin 100°}(2 \sin 50° - \cos 100°)

= 1 sin 100 ° ( 2 sin ( 90 ° 40 ° ) cos ( 60 ° + 40 ° ) ) = \frac{1}{\sin 100°}(2 \sin (90° - 40°) - \cos (60° + 40°))

= 1 sin 100 ° ( 2 cos 40 ° cos 60 ° cos 40 ° + sin 60 ° sin 40 ° ) = \frac{1}{\sin 100°}(2 \cos 40° - \cos 60° \cos 40° + \sin 60° \sin 40°)

= 1 sin 100 ° ( 2 cos 40 ° 1 2 cos 40 ° + 3 2 sin 40 ° ) = \frac{1}{\sin 100°}(2 \cos 40° - \frac{1}{2} \cos 40° + \frac{\sqrt{3}}{2} \sin 40°)

= 1 sin 100 ° ( 3 2 cos 40 ° + 3 2 sin 40 ° ) = \frac{1}{\sin 100°}(\frac{3}{2} \cos 40° + \frac{\sqrt{3}}{2} \sin 40°)

= 3 sin 100 ° ( 3 2 cos 40 ° + 1 2 sin 40 ° ) = \frac{\sqrt{3}}{\sin 100°}(\frac{\sqrt{3}}{2} \cos 40° + \frac{1}{2} \sin 40°)

= 3 sin 100 ° ( sin 60 ° cos 40 ° + cos 60 ° sin 40 ° ) = \frac{\sqrt{3}}{\sin 100°}(\sin 60° \cos 40° + \cos 60° \sin 40°)

= 3 sin 100 ° sin ( 60 ° + 40 ° ) = \frac{\sqrt{3}}{\sin 100°} \cdot \sin (60° + 40°)

= 3 sin 100 ° sin 100 ° = \frac{\sqrt{3}}{\sin 100°} \cdot \sin 100°

= 3 = \sqrt{3}

David Vreken - 11 months ago

Log in to reply

Thanks. But I have not given out. See my solution.

Chew-Seong Cheong - 11 months ago

Log in to reply

even better, nice job!

David Vreken - 11 months ago

The first factor is 3 \sqrt 3 , the second is 1 2 -\dfrac {1}{2} , and the third is 1 1 .

Their product is 3 2 -\dfrac {\sqrt 3}{2} and the answer is 8661 \boxed {-8661} .

Answer to this problem :

Same .

Can u explain how to get the value of each without using calculator ?

wing yan yau - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...