Reach for the Summit - M-S5-A1

Geometry Level 3

In A B C \triangle ABC , A ( 3 , 4 ) A(3,4) , B ( 5 , 0 ) B(-5,0) , M ( 0 , 0 ) M(0,0) , N ( 2 , 0 ) N(2,0) , C C is a point on the positive x x -axis such that B A M = C A N \angle BAM = \angle CAN .

If the circumcenters of A M N \triangle AMN and A B C \triangle ABC are D ( x 1 , y 1 ) D(x_1,y_1) and E ( x 2 , y 2 ) E(x_2,y_2) respectively, find 1000 ( x 1 + 2 y 1 + 3 x 2 + 4 y 2 ) \lfloor 1000(x_1+2y_1+3x_2+4y_2)\rfloor .

Hint: Find the relationship of A D AD and A E AE .


Reach for the Summit problem set - Mathematics


The answer is 8527.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Position coordinates of C C are ( 35 9 , 0 ) \left (\dfrac {35}{9},0\right )

Equation of perpendicular bisector of M N \overline {MN} is x = 1 x=1 , of A M \overline {AM} is

y 2 = 3 4 ( x 3 2 ) y-2=-\dfrac 34 (x-\frac 32)

Solving we get the position coordinates of the circumcentre of A M N \triangle {AMN} as ( 1 , 19 8 ) \left (1,\dfrac {19}{8}\right )

Equation of perpendicular bisector of B C \overline {BC} is x = 5 9 x=-\dfrac 59 ,

of A B \overline {AB} is y 2 = 2 ( x + 1 ) y-2=-2(x+1)

Solving we get the position coordinates of the circumcentre of A B C \triangle {ABC} as

( 5 9 , 10 9 ) \left (-\dfrac 59,\dfrac {10}{9}\right )

So, x 1 = 1 , y 1 = 19 8 , x 2 = 5 9 , y 2 = 10 9 x_1=1,y_1=\dfrac {19}{8},x_2=-\dfrac 59,y_2=\dfrac {10}{9}

Hence the required answer is 8527 \boxed {8527} .

Chew-Seong Cheong
Jul 29, 2020

Since A ( 3 , 4 ) A(3,4) , we note that A M = 5 AM = 5 . As B M = A M = 5 BM=AM=5 , A M B \triangle AMB is isosceles and A B M = B A M = C A N = θ \angle ABM = \angle BAM = \angle CAN = \theta . We also note that A B C \triangle ABC and C A N \triangle CAN are similar. Then we have:

A C N C = A B A N = B C A C \frac {AC}{NC} = \frac {AB}{AN} = \frac {BC}{AC}

Then A C N C = A B A N = 8 2 + 4 2 1 2 + 4 2 = 80 17 \dfrac {AC}{NC} = \dfrac {AB}{AN} = \dfrac {\sqrt{8^2+4^2}}{\sqrt{1^2+4^2}} = \sqrt{\dfrac {80}{17}} . Let N C = a NC = a ; then A C = 80 17 a AC = \sqrt{\dfrac {80}{17}}a . And also:

B C A C = A B A N B C = A B A N × A C 7 + a = 80 17 × 80 17 a = 80 17 a 119 + 17 a = 80 a a = 119 63 \begin{aligned} \frac {BC}{AC} & = \frac {AB}{AN} \\ BC & = \frac {AB}{AN} \times AC \\ 7+a & = \sqrt{\frac {80}{17}} \times \sqrt{\frac {80}{17}} a = \frac {80}{17}a \\ 119 + 17a & = 80a \\ \implies a & = \frac {119}{63} \end{aligned}

We can find the coordinates of circumcenter by first finding the circumradius using the formula 2 r = a sin A 2r = \dfrac a{\sin A} , where a a is the side length opposite A \angle A in a triangle.

For A M N \triangle AMN , r 1 = A N 2 sin A M N = 17 2 × 4 5 = 5 17 8 r_1 = \dfrac {AN}{2 \sin \angle AMN} = \dfrac {\sqrt{17}}{2 \times \frac 45} = \dfrac {5\sqrt{17}}8 . Noting that x 1 x_1 is the midpoint of M N MN or x 1 = 1 x_1 = 1 , then

x 1 2 + y 1 2 = r 1 2 1 2 + y 1 2 = 25 × 17 64 y 1 = 19 8 \begin{aligned} x_1^2 + y_1^2 & = r_1^2 \\ 1^2 + y_1^2 & = \frac {25 \times 17}{64} \\ \implies y_1 & = \frac {19}8 \end{aligned}

Similarly for A B C \triangle ABC , r 2 = A C 2 sin A B C = 80 17 × 119 63 2 × 1 5 = 10 17 9 r_2 = \dfrac {AC}{2 \sin \angle ABC} = \dfrac {\sqrt{\frac {80}{17}}\times \frac {119}{63}}{2\times \frac 1{\sqrt 5}} = \dfrac {10\sqrt{17}}9 . x 2 = 5 + 2 + a 2 = 5 9 x_2 = \dfrac {-5+2+a}2 = - \dfrac 59 , and y 2 = ( 10 17 9 ) 2 ( 5 9 + 5 ) 2 = 10 9 \\ y_2 = \sqrt{\left(\dfrac {10 \sqrt{17}}9 \right)^2-\left(-\dfrac 59+5\right)^2} = \dfrac {10}9 .

Therefore 1 0 6 ( x 1 + 2 y 1 + 3 x 2 + 4 y 2 ) = 8527 \lfloor 10^6(x_1 + 2y_1 + 3x_2 + 4y_2)\rfloor = \boxed{8527} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...