Given that
A
(
1
,
−
1
)
,
B
(
−
4
,
5
)
,
C
is on line
A
B
, and
∣
A
C
∣
=
3
∣
A
B
∣
, then find all possible coordinates of point
C
.
How to submit:
-
First, find the number of all possible solutions
(
x
,
y
)
. Let
N
denote the number of solutions.
-
Then sort the solutions by
x
from smallest to largest, if
x
is the same, then sort by
y
from smallest to largest.
-
Let the sorted solutions be:
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
,
(
x
3
,
y
3
)
,
⋯
,
(
x
N
,
y
N
)
, then
M
=
k
=
1
∑
N
k
(
x
k
+
y
k
)
.
For instance, if the solution is
(
−
1
,
2
)
,
(
−
1
,
1
)
,
(
1
,
3
)
,
(
0
,
4
)
, the sorted solution will be:
(
−
1
,
1
)
,
(
−
1
,
2
)
,
(
0
,
4
)
,
(
1
,
3
)
, then
N
=
4
and
M
=
k
=
1
∑
4
k
(
x
k
+
y
k
)
=
1
×
(
−
1
+
1
)
+
2
×
(
−
1
+
2
)
+
3
×
(
0
+
4
)
+
4
×
(
1
+
3
)
=
3
0
.
For this problem,
submit
⌊
M
+
N
⌋
.
Reach for the Summit problem set - Mathematics