Reach for the Summit - M-S6-A2

Geometry Level 3

As shown above, line l l is tangent to curve C : x 2 + y 2 2 x 2 y + 1 = 0 C:x^2+y^2-2x-2y+1=0 and it intersects with y-axis at point A A , x-axis at point B B , O O is the origin, O A > 2 , O B > 2 |OA|>2, |OB|>2 . Then find the minimum area for A O B \triangle AOB .

Let S S denote the minimum area. Submit 1000 S \lfloor 1000S \rfloor .


Reach for the Summit problem set - Mathematics


The answer is 5828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 28, 2020

Note that C : x 2 + y 2 2 x 2 y + 1 = 0 C : ( x 1 ) 2 + ( y 1 ) 2 = 1 C: x^2 + y^2 - 2x - 2y + 1 = 0 \implies C: (x-1)^2 + (y-1)^2 = 1 is the incircle of A O B \triangle AOB with center at ( 1 , 1 ) (1,1) and radius 1 1 . Then the A O B \triangle AOB with the smallest area is when it is an isosceles triangle with O A = O B OA=OB and A = B = 4 5 \angle A = \angle B = 45^\circ (see proof below):

Then we have O A = O B = 2 ( 1 + 2 ) OA = OB = \sqrt 2 (1+\sqrt 2) and the minimum area of A O B \triangle AOB , S = O A 2 2 = ( 1 + 2 ) 2 = 3 + 2 2 5.828 1000 S = 5828 S = \dfrac {OA^2}2 = (1+\sqrt 2)^2 = 3 + 2\sqrt 2 \approx 5.828 \implies \lfloor 1000 S \rfloor = \boxed{5828} .


Proof

Let O B = a OB = a , O A = b OA = b , and O B A = θ \angle OBA = \theta . Then we have:

{ a = cot ( θ 2 ) + 1 b = cot ( 4 5 θ 2 ) + 1 \begin{cases} a = \cot \left(\dfrac \theta 2 \right) + 1 \\ b = \cot \left(45^\circ - \dfrac \theta 2 \right) + 1 \end{cases} \quad Let t = tan θ 2 { a = 1 t + 1 = 1 + t t b = 1 + t 1 t + 1 = 2 1 t t = \tan \dfrac \theta 2 \implies \begin{cases} a = \dfrac 1t + 1 = \dfrac {1+t}t \\ b = \dfrac {1+t}{1-t} + 1 = \dfrac 2 {1-t} \end{cases}

The area of A O B \triangle AOB is given by A = a b 2 = 1 + t t ( 1 t ) A = \dfrac {ab}2 = \dfrac {1+t}{t(1-t)} to find minimum A A , we first find the value of t t such that d A d t = 0 \dfrac {dA}{dt} = 0 and d 2 A d t 2 > 0 \dfrac {d^2 A}{dt^2} > 0 .

d A d t = t ( 1 t ) ( 1 + t ) ( 1 2 t ) t 2 ( 1 t ) 2 = t 2 + 2 t 1 t 2 ( 1 t ) 2 Putting d A d t = 0 t 2 + 2 t 1 = 0 t 2 + 2 t + 1 = 2 ( t + 1 ) 2 = 2 t = 2 1 Since t > 0 \begin{aligned} \frac {dA}{dt} & = \frac {t(1-t) - (1+t)(1-2t)}{t^2(1-t)^2} = \frac {t^2+2t -1}{t^2(1-t)^2} & \small \blue{\text{Putting }\frac {dA}{dt} = 0} \\ t^2 + 2t - 1 & = 0 \\ t^2 + 2t + 1 & = 2 \\ (t+1)^2 & = 2 \\ \implies t & = \sqrt 2 - 1 & \small \blue{\text{Since }t > 0} \end{aligned}

Since d 2 A d t 2 > 0 \dfrac {d^2A}{dt^2} > 0 , when t = 2 1 t= \sqrt 2 -1 , A A is minimum when t = tan θ 2 = 2 1 t = \tan \dfrac \theta 2 = \sqrt 2 -1 . tan θ = 2 ( 2 1 ) 1 ( 2 1 ) 2 = 1 θ = 4 5 \implies \tan \theta = \dfrac {2(\sqrt 2-1)}{1-(\sqrt 2-1)^2} = 1 \implies \theta = 45^\circ .

The area of O A B \triangle {OAB} will be minimum when O A = O B = 2 + 2 |\overline {OA}|=|\overline {OB}|=2+\sqrt 2

The minimum area will be

1 2 × ( 2 + 2 ) 2 = 3 + 2 2 5.828427 \dfrac 12\times (2+\sqrt 2) ^2=3+2\sqrt 2\approx 5.828427

Hence the required answer is 5828 \boxed {5828} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...