Three spheres of radii are placed on a horizontal table, tangent to each other. They are then fixed in their position (for example, by using glue or welding). Now a fourth sphere of radius is placed on top of the three spheres. If this top sphere weighs Newtons, find the sum of the magnitudes of the reaction forces from the three bottom spheres, acting on the top sphere and balancing its weight force.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Begin by writing down the known and unknown quantities. The coordinates are for the centers of the spheres. The table is considered to be the x y plane.
R 5 = 5 R 6 = 6 R 7 = 7 R 8 = 8 ( x 5 , y 5 , z 5 ) = ( 0 , 0 , R 5 ) ( x 6 , y 6 , z 6 ) = ( ? , 0 , R 6 ) ( x 7 , y 7 , z 7 ) = ( ? , ? , R 7 ) ( x 8 , y 8 , z 8 ) = ( ? , ? , ? )
Solve the following six nonlinear equations for ( x 6 , x 7 , y 7 , x 8 , y 8 , z 8 ) .
( x 5 − x 6 ) 2 + ( y 5 − y 6 ) 2 + ( z 5 − z 6 ) 2 = ( R 5 + R 6 ) 2 ( x 5 − x 7 ) 2 + ( y 5 − y 7 ) 2 + ( z 5 − z 7 ) 2 = ( R 5 + R 7 ) 2 ( x 5 − x 8 ) 2 + ( y 5 − y 8 ) 2 + ( z 5 − z 8 ) 2 = ( R 5 + R 8 ) 2 ( x 6 − x 7 ) 2 + ( y 6 − y 7 ) 2 + ( z 6 − z 7 ) 2 = ( R 6 + R 7 ) 2 ( x 6 − x 8 ) 2 + ( y 6 − y 8 ) 2 + ( z 6 − z 8 ) 2 = ( R 6 + R 8 ) 2 ( x 7 − x 8 ) 2 + ( y 7 − y 8 ) 2 + ( z 7 − z 8 ) 2 = ( R 7 + R 8 ) 2
Having found the centers of all spheres, calculate unit vectors u 5 8 , u 6 8 , and u 7 8 from the centers of spheres 5 , 6 , and 7 to the center of sphere 8 . These are the lines of action for the forces. Then solve the following linear equations for the forces:
F 5 8 u 5 8 x + F 6 8 u 6 8 x + F 7 8 u 7 8 x = 0 F 5 8 u 5 8 y + F 6 8 u 6 8 y + F 7 8 u 7 8 y = 0 F 5 8 u 5 8 z + F 6 8 u 6 8 z + F 7 8 u 7 8 z = 1 0 0
Results:
( x 5 , y 5 , z 5 ) ≈ ( 0 , 0 , 5 ) ( x 6 , y 6 , z 6 ) ≈ ( 1 0 . 9 5 , 0 , 6 ) ( x 7 , y 7 , z 7 ) ≈ ( 4 . 2 , 1 1 . 0 6 , 7 ) ( x 8 , y 8 , z 8 ) ≈ ( 3 . 1 4 , 0 . 5 0 7 , 1 7 . 6 ) F 5 8 ≈ 7 2 . 7 4 F 6 8 ≈ 3 0 . 7 6 F 7 8 ≈ 5 . 6 1