Chemistry Daily Challenge 23-July-2015

Chemistry Level 3

For the elementary reactions in series

Find the maximum concentration of R. \color{#3D99F6}{\text{Find the maximum concentration of R.}}

C a 0 e 2 \frac{C_{a0}}{e^2} C a 0 2 e 2 \frac{C_{a0}}{2e^2} C a 0 e \frac{C_{a0}}{e} 2 C a 0 e \frac{2C_{a0}}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 21, 2016

The rates of the two reactions are as given below:

{ d C A d t = k 1 t . . . ( 1 ) d C R d t = k 1 C A a p p e a r a n c e k 2 C R d i s a p p e a r a n c e . . . ( 2 ) \begin{cases} - \frac{dC_A}{dt} = k_1 t &...(1) \\ \frac{dC_R}{dt} = \underbrace{k_1 C_A}_{appearance} - \underbrace{k_2 C_R}_{disappearance} &...(2) \end{cases}

Let k = k 1 = k 2 k = k_1 = k_2 .

( 1 ) : d C A C A = k d t ln C A = k t + constant C A = C A 0 e k t ( 2 ) : d C R d t = k C A k C R = k C A 0 e k t k C R . . . ( 3 ) C R = k C A 0 t e k t See Note \begin{aligned} (1): \quad \int \frac{dC_A}{C_A} & = - \int k \space dt \\ \ln C_A & = -kt + \text{constant} \\ \Rightarrow C_A & = C_{A0} e^{-kt} \\ (2): \quad \quad \frac{dC_R}{dt} & = k C_A - k C_R \\ & = kC_{A0} e^{-kt} - kC_R \quad ...(3) \\ \Rightarrow \color{#3D99F6}{C_R} & \color{#3D99F6}{= kC_{A0} t e^{-kt} \quad \quad \quad \quad \small \text{See Note}} \end{aligned}

For maximum C R C_R , then:

d C R d t = 0 ( 3 ) : k C A 0 e k t k C R = 0 k C A 0 e k t k 2 C A 0 t e k t = 0 k C A 0 e k t = k 2 C A 0 t e k t t = 1 k C R m a x = k C A 0 ( 1 k ) e k ( 1 k ) = C A 0 e \begin{aligned} \Rightarrow \frac{dC_R}{dt} & = 0 \\ (3): \quad \quad kC_{A0} e^{-kt} - kC_R & = 0 \\ kC_{A0} e^{-kt} - k^2C_{A0} t e^{-kt} & = 0 \\ kC_{A0} e^{-kt} & = k^2C_{A0} t e^{-kt} \\ \Rightarrow t & = \frac{1}{k} \\ \Rightarrow C_{R_{max}} & = kC_{A0} \left(\frac{1}{k}\right) e^{-k\left(\frac{1}{k}\right)} \\ & = \boxed{\dfrac{C_{A0}}{e}} \end{aligned}

Note: \color{#3D99F6}{\text{Note:}} If C R = k C A 0 t e k t \color{#3D99F6}{C_R = kC_{A0} t e^{-kt}} , then:

d C R d t = d d t k C A 0 t e k t = k C A 0 e k t k 2 C A 0 t e k t = k C A 0 e k t k C R . . . ( 3 ) \begin{aligned} \frac{dC_R}{dt} & = \frac{d}{dt} kC_{A0} t e^{-kt} \\ & = kC_{A0} e^{-kt} - k^2C_{A0} t e^{-kt} \\ & = kC_{A0} e^{-kt} - kC_R \quad ...(3) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...