Read behind words

Calculus Level 3

π / 6 π / 3 d x sin 2 x = ? \large \int _{ { \pi } / { 6 } }^{ { \pi } / { 3 } }{ \dfrac { dx }{ \sin { 2x } } } = \, ?

π 4 \frac { \pi }{ 4 } ln 3 2 \ln { \frac { 3 }{ 2 } } ln 3 \ln { \sqrt { 3 } } π 2 \frac { \pi }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

π 6 π 3 d x sin ( 2 x ) = π 6 π 3 d x 2 sin x cos x Let y = sin x d y = cos x d x = 1 2 3 2 d y 2 sin x cos 2 x = 1 2 3 2 d y 2 y ( 1 y 2 ) = 1 4 1 2 3 2 ( 1 1 y + 2 y 1 1 + y ) d y = 1 4 [ ln ( 1 y ) + 2 ln y ln ( 1 + y ) ] 1 2 3 2 = 1 4 [ ln ( y 2 1 y 2 ) ] 1 2 3 2 = 1 4 [ ln ( 3 4 1 3 4 ) ln ( 1 4 1 1 4 ) ] = 1 4 [ ln 3 ln ( 1 3 ) ] = ln 9 4 = ln 3 \begin{aligned} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{\sin(2x)} & = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{2\sin x \cos x} \quad \quad \small \color{#3D99F6}{\text{Let }y = \sin x \quad \Rightarrow dy = \cos x \space dx} \\ & = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{dy}{2\sin x \cos^2 x} \\ & = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{dy}{2 y (1 - y^2)} \\ & = \frac{1}{4} \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \left(\frac{1}{1-y} + \frac{2}{y} - \frac{1}{1+y} \right) dy \\ & = \frac{1}{4} \left[ -\ln(1-y) + 2 \ln y - \ln(1+y) \right]_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\ & = \frac{1}{4} \left[ \ln \left( \frac {y^2}{1-y^2} \right) \right]_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\ & = \frac{1}{4} \left[ \ln \left(\frac{\frac{3}{4}}{1-\frac{3}{4}} \right) - \ln \left(\frac{\frac{1}{4}} {1-\frac{1}{4}} \right) \right] \\ & = \frac{1}{4} \left[ \ln 3 - \ln \left(\frac{1}{3} \right) \right] = \frac{\ln 9}{4} = \boxed{\ln \sqrt{3}} \end{aligned}

csc x d x \int \csc x d x = ln ( csc x cot x ) + C = ln ( t a n x 2 ) + C \ln (\csc x - \cot x) + C = \ln (tan \dfrac{x}{2}) + C mayalso be applied for fast relief.

Anyway, I applied Wolfram Alpha.

Lu Chee Ket - 5 years, 5 months ago

Log in to reply

Thanks. You can use software to solve your problems, but please don't present it as a solution. I use Wolfram Alpha to check solutions.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

I shall try to write as a reply instead of another solution.

Lu Chee Ket - 5 years, 5 months ago

Nice job! You and I always seem to differ in our approaches but the outcome is always the same!

Jason Simmons - 5 years, 5 months ago
Hobart Pao
Jan 6, 2016

sin ( 2 x ) \sin(2x) can be represented as 2 tan x 1 + tan 2 x \dfrac{2\tan x}{1+\tan^{2}x} .

= 1 2 π 6 π 3 1 + tan 2 x tan x d x = \displaystyle \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{1+\tan^{2}x}{\tan x} \text{ d}x = 1 2 π 6 π 3 sec 2 x tan x d x = \displaystyle \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \dfrac{\sec^{2}x}{\tan x} \text{ d}x Let u = tan x ; d u = sec 2 x d x u=\tan x; \text{d}u=\sec^{2}x \text{ d}x = 1 2 x = π 6 x = π 3 d u u = \displaystyle \frac{1}{2} \int_{x=\frac{\pi}{6}}^{x=\frac{\pi}{3}} \dfrac{\text{d}u}{u} = 1 2 [ ln u ] x = π 6 x = π 3 = 1 2 [ ln tan x ] x = π 6 x = π 3 = \displaystyle \frac{1}{2} \left[ \ln u \right]_{x=\frac{\pi}{6}}^{x=\frac{\pi}{3}} = \frac{1}{2} \left[ \ln \tan x \right]_{x=\frac{\pi}{6}}^{x=\frac{\pi}{3}} = 1 2 ln 3 = ln 3 = \displaystyle \dfrac{1}{2} \ln 3 = \boxed{\ln \sqrt{3}}

Mohammad Hamdar
Jan 4, 2016

π 6 π 3 1 sin 2 x d x = π 6 π 3 sin 2 x + cos 2 x 2 sin x cos x d x = 1 2 π 6 π 3 2 sin x ( 2 cos x ) 1 + 1 2 π 6 π 3 2 cos x ( 2 sin x ) 1 = { π 3 π 6 ( 1 2 ln 2 cos x + 1 2 ln 2 sin x ) = ln 3 \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \frac { 1 }{ \sin { 2x } } dx=\int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \frac { { { \sin ^{ 2 }{ x+\cos ^{ 2 }{ x } } } } }{ 2\sin { x } \cos { x } } dx } } \\ =-\frac { 1 }{ 2 } \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ -2\sin { x({ 2\cos { x) } }^{ -1 } } } +\frac { 1 }{ 2 } \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ 2\cos { x({ 2\sin { x) } }^{ -1 } } } \\ =\begin{cases} \frac { \pi }{ 3 } \\ \frac { \pi }{ 6 } \end{cases}(\quad -\frac { 1 }{ 2 } \ln { \left| 2\cos { x } \right| } +\frac { 1 }{ 2 } \ln { 2\sin { x } } )\\ =\ln { \sqrt { 3 } }

Deepak Kumar
Jan 3, 2016

Clearly it is (sec(x))^2/tanx where substution tanx=t helps

Well, my solution includes sec 2 x tan x \frac{\sec^2 x}{\tan x} but it wasn't "clear" to me until I fiddled around with some trig ID's. But yes, from this trig substitution I was able to get the integral d t t , t = tan x and d t = sec 2 x d x \int \frac{dt}{t}, \: t=\tan x \: \: \textrm{and} \: \: dt=\sec^2 x \: dx

Jason Simmons - 5 years, 5 months ago

For the mean value theorem, the solution is >0.52 and <0.609. Only the correct answer is in that range

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...