Not really complex

Algebra Level 4

Suppose x x is a complex number such that 4 x 2 + 2 x + 1 = 0 4x^2+2x+1=0 . Then,

x 3 + x 6 + x 9 + x 12 + = a b \large x^3+x^6+x^9+x^{12}+\ldots = \frac ab

where a a and b b are coprime positive integers. Find the value of a + b a+b .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

4 x 2 + 2 x + 1 = 0 Multiplying both sides by 2 x 8 x 3 + 4 x 2 + 2 x = 0 Adding 1 to both sides 8 x 3 + 4 x 2 + 2 x + 1 = 1 8 x 3 + 0 = 1 x 3 = 1 8 \begin{aligned} 4x^2 + 2x + 1 & = 0 & \small \color{#3D99F6} \text{Multiplying both sides by }2x \\ 8x^3 + 4x^2 + 2x & = 0 & \small \color{#3D99F6} \text{Adding 1 to both sides} \\ 8x^3 + {\color{#3D99F6}4x^2 + 2x + 1} & = 1 \\ 8x^3 + {\color{#3D99F6}0} & = 1 \\ \implies x^3 & = \frac 18 \end{aligned}

Therefore, we have:

S = x 3 + x 6 + x 9 + x 12 + = 1 8 + ( 1 8 ) 2 + ( 1 8 ) 3 + ( 1 8 ) 4 + = 1 8 ( 1 1 1 8 ) = 1 7 \begin{aligned} S & = x^3+x^6+x^9+x^{12}+\cdots \\ & = \frac 18 + \left(\frac 18 \right)^2 + \left(\frac 18 \right)^3 + \left(\frac 18 \right)^4 + \cdots \\ & = \frac 18 \left(\frac 1{1-\frac 18}\right) \\ & = \frac 17 \end{aligned}

a + b = 1 + 7 = 8 \implies a + b = 1 + 7 = \boxed{8}

Joshua Chin
Sep 2, 2017

4 x 2 + 2 x + 1 = 0 ( 2 x 1 ) ( 4 x 2 + 2 x + 1 ) = 0 4x^2+2x+1=0\quad \Leftrightarrow (2x-1)(4x^2+2x+1)=0

This means that 8 x 3 1 = 0 8x^3-1=0 , or x 3 = 1 8 x^3=\frac{1}{8}

The sum x 3 + x 6 + x 9 + x^3+x^6+x^9+\ldots is a geometric progression wrt x 3 x^3 and with common ratio 1 8 \frac{1}{8} , so x 3 + x 6 + x 9 + = 1 8 1 1 8 = 1 7 x^3+x^6+x^9+\ldots=\frac{\frac{1}{8}}{1-\frac{1}{8}}=\frac{1}{7} , so a + b = 1 + 7 = 8 a+b=1+7=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...