Real fun with cyclic quadrilateral

Geometry Level 5

Let a cyclic quadrilateral A B C D ABCD inscribed in a circle with a given side length A B = a AB=a and A B AB subtends θ \theta degree angle at the center of that circle.

Maximize the area, A A of quadrilateral A B C D ABCD .

If it can be expressed as:

A max = a 2 p ( 1 cos θ ) × ( q sin ( 2 π θ r ) + sin θ ) \displaystyle{A_{ \text{max} }=\cfrac { { a }^{ 2 } }{ p(1-\cos { \theta } ) } \times \left( q\sin { \left( \cfrac { 2\pi -\theta }{ r } \right) +\sin { \theta } } \right) }

for positive integers p , q , r p,q,r , evaluate p + q + r p+q+r .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Deepanshu Gupta
May 30, 2015

Let O O as center of given circle { r a d i u s = r radius=r } , Clearly in triangle O A B OAB using cosine law a 2 = r 2 + r 2 2 r . r cos θ r 2 = a 2 2 ( 1 cos θ ) \displaystyle{{ a }^{ 2 }={ r }^{ 2 }+{ r }^{ 2 }-2r.r\cos { \theta } \\ { r }^{ 2 }=\cfrac { { a }^{ 2 } }{ 2(1-\cos { \theta } ) } }

N o t e Note : Since it is Standard result that area of an standard triangle A B C ABC is Δ = 1 2 b c sin A \Delta =\cfrac { 1 }{ 2 } bc\sin { A }

Let angle's as B O C = x 1 , C O D = x 2 , D O A = x 3 \displaystyle{\angle BOC={ x }_{ 1 },\angle COD={ x }_{ 2 },\angle DOA={ x }_{ 3 }}

So Area of quadrilateral is :

A = 1 2 × r 2 ( sin θ + sin x 1 + sin x 2 + sin x 3 ) \displaystyle{A=\cfrac { 1 }{ 2 } \times { r }^{ 2 }\left( \sin { \theta } +\sin { { x }_{ 1 } } +\sin { { x }_{ 2 } } +\sin { { x }_{ 3 } } \right) }

For to maximize area A , we have to maximize sin x 1 + sin x 2 + sin x 3 \displaystyle{\sin { { x }_{ 1 } } +\sin { { x }_{ 2 } } +\sin { { x }_{ 3 } } } where it has constrained that x 1 + x 2 + x 3 = 2 π θ \displaystyle{{ x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=2\pi -\theta } . For this purpose In my opinion Jenson's Inequality is best .

So consider an function f ( x ) = sin x \displaystyle{f(x)=\sin { x } } and Applying Jensen's Inequality , maximum will occur when :

sin x 1 + sin x 2 + sin x 3 = 3 sin ( x 1 + x 2 + x 3 3 ) 3 sin ( 2 π θ 3 ) \displaystyle{\sin { { x }_{ 1 } } +\sin { { x }_{ 2 } } +\sin { { x }_{ 3 } } =3\sin { \left( \cfrac { { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 } }{ 3 } \right) } \equiv 3\sin { \left( \cfrac { 2\pi -\theta }{ 3 } \right) } } . So Maximum area will be :

A m a x = 1 2 × r 2 ( sin θ + 3 sin ( 2 π θ 3 ) ) A m a x = a 2 4 ( 1 cos θ ) × ( sin θ + 3 sin ( 2 π θ 3 ) ) \displaystyle{{ A }_{ max }=\cfrac { 1 }{ 2 } \times { r }^{ 2 }\left( \sin { \theta } +3\sin { \left( \cfrac { 2\pi -\theta }{ 3 } \right) } \right) \\ { A }_{ max }=\cfrac { { a }^{ 2 } }{ 4\left( 1-\cos { \theta } \right) } \times \left( \sin { \theta } +3\sin { \left( \cfrac { 2\pi -\theta }{ 3 } \right) } \right) }

P = 4 , q = 3 , r = 3 , p + q + r = 10 P=4,q=3,r=3,p+q+r=10

Moderator note:

Always remember to check the conditions of a theorem before you use it. In order to immediately apply Jensen's, we need the function to be completely convex / concave over the (restricted) domain. This is not true if x 1 > π x_1 > \pi .

As a side note, can you prove the uniqueness of the final form?

Actually a similar question appeared in INMO 2013. This can be said as a generalized result of the same problemm nice question. Did the same way as u.

akash deep - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...