Remember, x must be real!

Algebra Level pending

For real numbers x x

x x satisfy the following equation

1.5 x + 5.5 33 x 1.5x+5.5-\sqrt { 33x } = 6 x 22 -|6x-22|

If the value of x x can be expressed in the form a b \frac { a }{ b } in which a a and b b are coprime positive integers, find the value of a + b a+b

This problem is edited from a classic problem.


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joshua Chin
Oct 24, 2015

Complete the square for 1.5 x + 5.5 + 33 x 1.5x+5.5+\sqrt { 33x }

1.5 x + 5.5 + 33 x 1.5x+5.5+\sqrt { 33x } = 3 x + 2 33 x + 11 2 \frac { 3x+2\sqrt { 33x } +11 }{ 2 }

The above expression equals to ( 3 x + 11 ) 2 2 \frac { { (\sqrt { 3x } +\sqrt { 11 } ) }^{ 2 } }{ 2 }

Shift 6 x 22 |6x-22| to the left hand side to get 6 x 22 + ( 3 x + 11 ) 2 2 = 0 |6x-22| +\frac { { (\sqrt { 3x } +\sqrt { 11 } ) }^{ 2 } }{ 2 }=0

As ( 3 x + 11 ) 2 2 \frac { { (\sqrt { 3x } +\sqrt { 11 } ) }^{ 2 } }{ 2 } , 6 x 22 |6x-22| \ge 0

This means that ( 3 x + 11 ) 2 2 = 0 \frac { { (\sqrt { 3x } +\sqrt { 11 } ) }^{ 2 } }{ 2 } =0

By manipulating, one will get x = 11 3 x=\frac { 11 }{ 3 } .

So a + b a+b = 11 + 3 11+3 = 14 14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...