Real Part

Algebra Level 3

( cos 6 0 + i sin 6 0 ) 12 + ( cos 6 0 + i sin 6 0 ) 11 + + ( cos 6 0 + i sin 6 0 ) + 12 { (\cos { 60^\circ } +i\sin { 60^\circ } ) }^{ 12 }+{ (\cos { 60^\circ } +i\sin { 60^\circ } ) }^{ 11 }+\cdots \\ + (\cos { 60^\circ } +i\sin { 60^\circ } )+12

Calculate the real part of the expression above.

Clarification: i = 1 i=\sqrt { -1 } .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let ( cos 60 ° + i sin 60 ° ) = w (\cos { 60° } +i\sin { 60° } )=w . Then, we can rewrite the expression as

w 12 + w 11 + . . . + w + 1 + 11 = w 13 1 w 1 + 11 = ( cos 60 ° + i sin 60 ° ) 13 1 ( cos 60 ° + i sin 60 ° ) 1 + 11 { w }^{ 12 }+{ w }^{ 11 }+...+w+1+11=\frac { { w }^{ 13 }-1 }{ w-1 } +11 =\frac { { (\cos { 60° } +i\sin { 60° } ) }^{ 13 }-1 }{ (\cos { 60° } +i\sin { 60° } )-1 } +11

Applying De Moivre's Formula,

( cos 60 ° + i sin 60 ° ) 13 = cos ( 13 60 ° ) + i sin ( 13 60 ° ) = cos 780 ° + i sin 780 ° = cos 60 ° + i sin 60 ° { (\cos { 60° } +i\sin { 60° } ) }^{ 13 }=\cos { (13\cdot 60°) } +i\sin { (13\cdot 60°) } =\cos { 780° } +i\sin { 780° } =\cos { 60° } +i\sin { 60° }

Therefore the equation is simply

( cos 60 ° + i sin 60 ° ) 1 ( cos 60 ° + i sin 60 ° ) 1 + 11 = 12 \frac { (\cos { 60° } +i\sin { 60° } )-1 }{ (\cos { 60° } +i\sin { 60° } )-1 } +11=12

Chew-Seong Cheong
Apr 24, 2016

We note that cos 6 0 + i sin 6 0 = cos π 3 + i sin π 3 = e π 3 = ω \cos 60^\circ + i \sin 60^\circ = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = e^\frac{\pi}{3} = \omega is the 6 t h 6^{th} root of unit. Then, we have ω 5 + ω 4 + ω 3 + ω 2 + ω + 1 = 0 \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0 , ω 6 = 1 \omega^6 = 1 and ω n = ω n mod 6 \omega^n = \omega^{n \text{ mod } 6} . Therefore,

S = ( cos 6 0 + i sin 6 0 ) 12 + ( cos 6 0 + i sin 6 0 ) 11 + . . . + ( cos 6 0 + i sin 6 0 ) + 12 = ω 12 + ω 11 + ω 10 + ω 9 + ω 8 + ω 7 + ω 6 + ω 5 + ω 4 + ω 3 + ω 2 + ω + 12 = ( 1 + ω 5 + ω 4 + ω 3 + ω 2 + ω ) + ( 1 + ω 5 + ω 4 + ω 3 + ω 2 + ω ) + 12 = 0 + 0 + 12 = 12 \begin{aligned} S & = (\cos 60^\circ + i \sin 60^\circ)^{12} + (\cos 60^\circ + i \sin 60^\circ)^{11} + ... + (\cos 60^\circ + i \sin 60^\circ) + 12 \\ & = \omega^{12} + \omega^{11} + \omega^{10} + \omega^9 + \omega^8 + \omega^7 + \omega^6 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 12 \\ & = (1 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega) + (1 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega) + 12 \\ & = 0 + 0 + 12 \\ & = \boxed{12} \end{aligned}

Great approach!

Mateo Matijasevick - 5 years, 1 month ago

Log in to reply

Yes, that is the magic of root of unit.

Chew-Seong Cheong - 5 years, 1 month ago
Prakhar Bindal
Apr 24, 2016

Real parts will be simply cos(60) + cos(120) + cos(180) +... cos(720) + 12 (Using De Moivre's Theorem)

For evaluating this series we have

When the angles inside sine or cosine are in AP then we have these set of formulae which are very well known

http://evergreen.loyola.edu/mpknapp/www/papers/knapp-sv.pdf

If we substituted these values in expression we would get value as 0

Hence real part = 12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...