The expression can assume all real values for all real values of is under a condition that , where are integers.
Find
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Upon examination, the value a = − 4 in the denominator has no real zeros due to x = − 8 − 3 ± 9 − 4 ( − 4 ) ( − 4 ) = 8 3 ∓ 5 5 i , which reduces the rational function f ( x ) = − 4 x 2 + 3 x + a a x 2 + 3 x − 4 to 1 for all x ∈ R .
The other way f ( x ) : R → R remains valid occurs iff f ′ ( x ) = 0 over x ∈ R . Its derivative computes to:
f ′ ( x ) = ( − 4 x 2 + 3 x + a ) 2 ( 2 a x + 3 ) ( − 4 x 2 + 3 x + a ) − ( − 8 x + 3 ) ( a x 2 + 3 x − 4 ) = ( − 4 x 2 + 3 x + a ) 2 ( 3 a + 1 2 ) x 2 + 2 ( a 2 − 1 6 ) x + ( 3 a + 1 2 ) = 0 ;
which will be satisfied when ( 3 a + 1 2 ) x 2 + 2 ( a 2 − 1 6 ) x + ( 3 a + 1 2 ) = 0 , or x = 2 ( 3 a + 1 2 ) − 2 ( a 2 − 1 6 ) ± 4 ( a 2 − 1 6 ) 2 − 4 ( 3 a + 1 2 ) 2 ;
or x = 3 a + 1 2 ( 1 6 − a 2 ) ± ( a + 4 ) 2 ( a − 4 ) 2 − 9 ( a + 4 ) 2 ;
or x = 3 ( a + 4 ) ( 4 + a ) ( 4 − a ) ± ( 4 + a ) ( a − 4 ) 2 − 9 ;
or x = 3 ( 4 − a ) ± a 2 − 8 a + 7 ;
or x = 3 ( 4 − a ) ± ( a − 1 ) ( a − 7 ) ;
which requires ( a − 1 ) ( a − 7 ) ≤ 0 ⇒ 1 ≤ a ≤ 7 . Hence, the result is a ∈ [ 1 , 7 ] ∪ { − 4 } ⇒ 1 + 7 − 4 = 4 .