Real roots

Algebra Level 4

What is the product of the real roots of the equation below?

x 2 + 18 x + 30 = 2 x 2 + 18 x + 45 \large{x^2+18x+30=2\sqrt{x^2+18x+45}}


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 25, 2017

x 2 + 18 x + 30 = 2 x 2 + 18 x + 45 Let y = x 2 + 18 x + 30 y = 2 y + 15 Squaring both sides y 2 = 4 ( y + 15 ) y 2 4 y 60 = 0 ( y 10 ) ( y + 6 ) = 0 y = 10 Note that when y = 6 : 6 2 6 + 15 x 2 + 18 x + 30 = 10 x 2 + 18 x + 20 = 0 \begin{aligned} x^2+18x + 30 & = 2\sqrt{x^2+18x+45} & \small \color{#3D99F6} \text{Let }y = x^2 + 18x+30 \\ y & = 2\sqrt{y+15} & \small \color{#3D99F6} \text{Squaring both sides} \\ y^2 & = 4(y+15) \\ y^2 - 4y - 60 & = 0 \\ (y-10)(y+6) & = 0 \\ \implies y & = 10 & \small \color{#3D99F6} \text{Note that when }y = -6: -6 \ne 2\sqrt{-6+15} \\ x^2+18x+30 & = 10 \\ x^2+18x+20 & = 0 \end{aligned}

Note that the roots of x 2 + 18 x + 20 x^2+18x+\color{#3D99F6}20 are real and by Vieta's formula , their product is 20 \boxed{\color{#3D99F6}20} .

Relevant wiki: Vieta's Formula Problem Solving - Basic

let y = x 2 + 18 x + 45 y=\sqrt{x^2+18x+45} then y 2 = x 2 + 18 x + 45 y^2=x^2+18x+45 , we have

x 2 + 18 x + 30 = 2 y x^2+18x+30=2y

adding 15 15 to both sides, we get

x 2 + 18 x + 45 = 2 y + 15 x^2+18x+45=2y+15

so,

y 2 2 y 15 = 0 y^2-2y-15=0

( y 5 ) ( y + 3 ) = 0 (y-5)(y+3)=0

y = 5 y=5

y = 3 y=-3 (Rejected since y y must be positive.)

Substituting y = 5 y=5 back, we get

x 2 + 18 x + 30 = 2 ( 5 ) x^2+18x+30=2(5)

x 2 + 18 x 20 = 0 x^2+18x-20=0

By Vieta's Formula , the product of the roots is

x 1 x 2 = c a = 20 1 = x_1x_2=\dfrac{c}{a}=\dfrac{20}{1}= 20 \large{\color{#D61F06}\boxed{20}}

x 2 + 18 x + 30 = 2 x 2 + 18 x + 45 x 2 + 18 x + 45 16 + 1 2 x 2 + 18 x + 45 = 0 ( x 2 + 18 x + 45 ) 2 2 x 2 + 18 x + 45 + 1 = 16 ( x 2 + 18 x + 45 1 ) 2 = 16 x 2 + 18 x + 45 1 = 4 x^2 + 18x + 30 = 2\sqrt{x^2 + 18x + 45} \\ x^2 + 18x + 45 - 16 + 1 - 2\sqrt{x^2 + 18x + 45} = 0 \\ (\sqrt{x^2 + 18x + 45})^2 - 2\sqrt{x^2 + 18x + 45} + 1 = 16 \\ (\sqrt{x^2 + 18x + 45} - 1)^2 = 16 \\ \sqrt{x^2 + 18x + 45} - 1 = 4

(it can't be -4, because the root on the LHS would be negative)

x 2 + 18 x + 45 = 5 x 2 + 18 x + 45 = 25 x 2 + 18 x + 20 = 0 \sqrt{x^2 + 18x + 45} = 5 \\ x^2 + 18x + 45 = 25 \\ x^2 + 18x +20 = 0

From Vieta's formula, product of the roots of the final equation is : x 1 x 2 = 20 \boxed{x_{1}x_2 = 20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...