Recall the definition

Calculus Level 4

( 3 2 ) ! = ? \large \left (-\cfrac{3}{2}\right)! = \, ?

2 π -2\sqrt{\pi} Does not exist 3 4 \frac{3}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 18, 2016

Using gamma function , we have:

Γ ( s ) = ( s 1 ) ! ( 3 2 ) ! = Γ ( 1 2 ) \begin{aligned} \Gamma (s) & = (s-1)! \\ \implies \left( - \frac 32 \right)! & = \Gamma \left( - \frac 12 \right) \end{aligned}

Using Euler's reflection formula:

Γ ( z ) Γ ( 1 z ) = π sin ( π z ) Putting z = 1 2 Γ ( 1 2 ) Γ ( 1 1 2 ) = π sin ( 1 2 π ) Γ 2 ( 1 2 ) = π Γ ( 1 2 ) = π \begin{aligned} \Gamma (z) \Gamma (1-z) & = \frac \pi{\sin (\pi z)} & \small \color{#3D99F6}{\text{Putting }z = \frac 12} \\ \Gamma \left( \frac 12 \right) \Gamma \left( 1 - \frac 12 \right) & = \frac \pi{\sin \left( \frac 12 \pi \right)} \\ \Gamma^2 \left(\frac 12 \right) & = \pi \\ \implies \Gamma \left(\frac 12 \right) & = \sqrt{\pi} \end{aligned}

Putting z = 3 2 z = \frac 32 ,

Γ ( 3 2 ) Γ ( 1 3 2 ) = π sin ( 3 2 π ) Γ ( 3 2 ) Γ ( 1 2 ) = π Note that Γ ( s + 1 ) = s Γ ( s ) 1 2 Γ ( 1 2 ) Γ ( 1 2 ) = π π 2 Γ ( 1 2 ) = π Γ ( 1 2 ) = 2 π \begin{aligned} \Gamma \left( \frac 32 \right) \Gamma \left( 1 - \frac 32 \right) & = \frac \pi{\sin \left( \frac 32 \pi \right)} \\ \color{#3D99F6}{\Gamma \left( \frac 32 \right)} \Gamma \left(- \frac 12 \right) & = - \pi & \small \color{#3D99F6}{\text{Note that }\Gamma (s+1) = s \Gamma (s)} \\ \color{#3D99F6}{\frac 12 \Gamma \left( \frac 12 \right)} \Gamma \left(- \frac 12 \right) & = - \pi \\ \color{#3D99F6}{\frac \pi 2} \Gamma \left(- \frac 12 \right) & = - \pi \\ \implies \Gamma \left(- \frac 12 \right) & = \boxed{- 2 \sqrt \pi} \end{aligned}

It should be π \sqrt{\pi} on LHS in blue.

A Former Brilliant Member - 4 years, 11 months ago

Log in to reply

Thanks, careless me.

Chew-Seong Cheong - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...