Recalling sir Euler

Algebra Level 2

e i π = ? \LARGE e^{i\pi} = \ ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

15 solutions

Siddharth Bhatt
Jun 7, 2015

Sir Euler once said

e i ϕ = cos ( ϕ ) + i sin ( ϕ ) e^{i \phi} = \cos(\phi)+ i \sin(\phi)

so e i π = cos ( π ) + i sin ( π ) = 1 + 0 = 1 e^{i \pi} = \cos(\pi)+i\sin(\pi) = -1+0=\boxed{-1}

Moderator note:

Simple standard approach.

Bonus question : Can you determine the value of π i e \large \pi^{i e} ?

Solution for the bonus question?

Kartikey Misra - 5 years, 11 months ago

Log in to reply

Let x = π i e x={ \pi }^{ ie } , then

ln x = i e ln π x = e i e ln π = cos e ln π + i sin e ln π π i e 0.99955 + 0.47023 i \ln { x } =ie\ln { \pi } \\ x={ e }^{ ie\ln { \pi } }=\cos { e\ln { \pi } } +i\sin { e\ln { \pi } } \\ { \pi }^{ ie }\approx -0.99955+0.47023i

Michael Fuller - 5 years, 11 months ago

Log in to reply

i sin e ln π 0.02989 i i\sin {e\ln { \pi } } \approx 0.02989i

André Cabatingan - 5 years, 9 months ago

A= pi^(ie) _ _ _ _ _ _

logA=ie(log(pi)) _ _ _ _ __

log(A)=1.35139346497i _ _ _ _ __

A = e^(1.35139346497i) _ _ _ _ __

A= cos(1.35139346497)+isin(1.35139346497) _ _ _ _ __

A= 0.21764 + 0.976(i) _ _ _ _ __

Shashank Rustagi - 5 years, 11 months ago

Using euler for Easy ques

Robin Singh - 6 years ago
Paul Cox
Jul 12, 2015

For anyone who hasn't seen this done out:

Apply the Maclauran series for e^(x)

e i π = 1 + i π + ( i π ) 2 2 + ( i π ) 3 3 ! + ( i π ) 4 4 ! + ( i π ) 5 5 ! + ( i π ) 6 6 ! + ( i π ) 7 7 ! + ( i π ) 8 8 ! e^{i\pi} = 1 + i\pi + \frac{(i\pi)^{2}}{2} + \frac{(i\pi)^{3}}{3!} + \frac{(i\pi)^{4}}{4!} + \frac{(i\pi)^{5}}{5!} + \frac{(i\pi)^{6}}{6!} + \frac{(i\pi)^{7}}{7!} + \frac{(i\pi)^{8}}{8!} ...

simplify the i's

= 1 + i π π 2 2 i π 3 3 ! + ( π ) 4 4 ! + i ( π ) 5 5 ! ( π ) 6 6 ! i ( π ) 7 7 ! + ( π ) 8 8 ! = 1 + i\pi - \frac{\pi^{2}}{2} - i\frac{\pi^{3}}{3!} + \frac{(\pi)^{4}}{4!} + i\frac{(\pi)^{5}}{5!} - \frac{(\pi)^{6}}{6!} - i\frac{(\pi)^{7}}{7!} + \frac{(\pi)^{8}}{8!} ...

distribute

= ( 1 π 2 2 + ( π ) 4 4 ! ( π ) 6 6 ! + ( π ) 8 8 ! . . . ) + i ( π π 3 3 ! + ( π ) 5 5 ! ( π ) 7 7 ! . . . ) = (1 - \frac{\pi^{2}}{2} + \frac{(\pi)^{4}}{4!} - \frac{(\pi)^{6}}{6!} + \frac{(\pi)^{8}}{8!}...) + i (\pi - \frac{\pi^{3}}{3!} + \frac{(\pi)^{5}}{5!} - \frac{(\pi)^{7}}{7!}...)

Apply the Maclauran series for sin(x) and cos(x)

= c o s ( π ) + i × s i n ( π ) = cos(\pi) + i \times sin(\pi)

simplify

= 1 + i × 0 = 1 = -1 + i \times 0 = -1

Therefore:

e i π = 1 e^{i\pi} = -1

nicely done using fundamental principle .

prashant singh - 5 years, 11 months ago
Aurelne Thian
Jul 16, 2015

If you visualise it using imaginary numbers in exponential form on an argand diagram it makes it a lot easier

A P
Apr 2, 2016

Another "solution" (not very rigorous). We know that e e is the limit as x goes to infinity of ( 1 + 1 x ) x \left(1 + \frac{1}{x}\right)^x , and that e z e^z is the limit of ( 1 + z x ) x \left(1 + \frac{z}{x}\right)^x . Now, let us look at the complex plane. If we draw the top half of the unit circle, and then divide it into n n parts, we notice a few things. First, we see that the rightmost point no on the x-axis to the n n is -1. Next, we also see that as n n becomes arbitrarily large, that same rightmost point goes to 1 + i π n 1+\frac{i\pi}{n} . Finally, piecing this together we have ( 1 + i π n ) n = 1 (1+\frac{i\pi}{n})^n = -1 which, by the first part is the same as e i π = 1 e^{i\pi} = -1 .

Wow very nice!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Jon Sy - 5 years ago
Monica De Guzman
Aug 20, 2015

Let z = cos(x) + i.sin(x)

   dz/dx = -sin(x) + i.cos(x)

         = i[cos(x) + i.sin(x)]

   dz/dx = i.z

 so dz/z = i.dx

INT[dz/z] = INT[i.dx]

   ln(z) = i.x + const

       z = e^(i.x + const)

Now from z = cos(x) + i.sin(x) when x=0, z=1 so the constant = 0

Thus z = e^(i.x)

That is cos(x) + i.sin(x) = e^(i.x)

When x = pi -1 = e^(i.pi)

Abir Mahdi
Aug 8, 2015

Euler formula.....

Vasant Barve
Jul 24, 2015

e^(i*pi) = -1 + 0 i = -1 ; I worked it in GeoGebra. A soft-ware free down-load from GeoGebra.org

Keshav Ramesh
Feb 12, 2017

Euler's Identity is as follows:

e i π + 1 = 0 e^{i\pi}+1=0

We can subtract 1 1 from both sides to give us e i π = 1 e^{i\pi}=-1

Sir isaac Newton
Nov 23, 2016

Cause Euler said so

Simple, just use Euler's formula

Mahesh R J
Aug 1, 2015

Let z = cos(x) + i.sin(x) dz/dx = -sin(x) + i.cos(x) = i[cos(x) + i.sin(x)] dz/dx = i.z so dz/z = i.dx INT[dz/z] = INT[i.dx] ln(z) = i.x + const z = e^(i.x + const) Now from z = cos(x) + i.sin(x) when x=0, z=1 so the constant = 0 Thus z = e^(i.x) That is cos(x) + i.sin(x) = e^(i.x) When x = pi -1 = e^(i.pi) 0 = e^(i.pi) + 1 or e^(i.pi) + 1 = 0

Pawan Seshadri
Jul 24, 2015

EULER Theorem bro!!!! let @ be theta (just consider).....

     i[@]
  e                 =      cos@ + i sin@

so e ^i(180 ) = cos 180 + i sin 180* = -1 + 0 i =-1 :)

Tushar Girotra
Jul 23, 2015

its a different form of representation of a complex number...it stands for - ( cos(pie) + iota*sin(pie)

Nuruzzaman Rakib
Jul 19, 2015

In response to Michael Fuller I think sin (eln(pi)) is equal to 0.02988975.

e^(iQ)= cos(Q) + isin(Q)

So, the answer is -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...