Reciprocal of factorials

Calculus Level 4

Evaluate n = 0 1 ( 3 n ) ! \sum_{n=0}^{\infty}\frac{1}{(3n)!} Round your answer to three decimal places.


The answer is 1.168.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chris Lewis
Aug 13, 2020

Let the sum be S S , and let ω = e 2 π i / 3 \omega=e^{2\pi i/3} , a complex cube-root of 1 1 . Note that ω \omega satisfies ω 2 + ω + 1 = 0 \omega^2+\omega+1=0 .

Consider the following sums: S 0 = n = 0 1 n ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + S 1 = n = 0 ω n n ! = 1 0 ! + ω 1 ! + ω 2 2 ! + 1 3 ! + ω 4 ! + S 2 = n = 0 ω 2 n n ! = 1 0 ! + ω 2 1 ! + ω 2 ! + 1 3 ! + ω 2 4 ! + \begin{aligned} S_0 &=\sum_{n=0}^{\infty} \frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots \\ S_1 &=\sum_{n=0}^{\infty} \frac{\omega^n}{n!} =\frac{1}{0!}+\frac{\omega}{1!}+\frac{\omega^2}{2!}+\frac{1}{3!}+\frac{\omega}{4!}+\cdots \\ S_2 &=\sum_{n=0}^{\infty} \frac{\omega^{2n}}{n!}=\frac{1}{0!}+\frac{\omega^2}{1!}+\frac{\omega}{2!}+\frac{1}{3!}+\frac{\omega^2}{4!}+\cdots \end{aligned}

When n n is a multiple of 3 3 , 1 + ω n + ω 2 n = 3 1+\omega^n+\omega^{2n}=3 . When n n is not a multiple of 3 3 , 1 + ω n + ω 2 n = 0 1+\omega^n+\omega^{2n}=0 . We cancel exactly the terms we wanted to! Adding the three sums, S 0 + S 1 + S 2 = 3 n = 0 1 ( 3 n ) ! = 3 S S_0+S_1+S_2=3\sum_{n=0}^{\infty} \frac{1}{(3n)!}=3S

But the sums are just exponentials in power-series form: S 0 = e S 1 = e ω = e 1 / 2 + i 3 / 2 = e 1 / 2 ( cos 3 2 + i sin 3 2 ) S 2 = e ω 2 = e 1 / 2 i 3 / 2 = e 1 / 2 ( cos 3 2 i sin 3 2 ) \begin{aligned} S_0&=e \\ S_1&=e^\omega=e^{-1/2+i\sqrt3/2}=e^{-1/2}\left( \cos \frac{\sqrt3}{2} + i \sin \frac{\sqrt3}{2} \right)\\ S_2&=e^{\omega^2}=e^{-1/2-i\sqrt3/2}=e^{-1/2}\left( \cos \frac{\sqrt3}{2} - i \sin \frac{\sqrt3}{2} \right) \end{aligned}

Adding these, we have S = 1 3 [ e + 2 cos 3 2 e ] = 1.168 S=\frac13 \left[e+\frac{2\cos \frac{\sqrt3}{2}}{\sqrt{e}} \right] = \boxed{1.168\ldots}

Can you show the complex number manipulation in your solution, please? It will benefit anybody who looks at your solution and me as well, @Chris Lewis

Yajat Shamji - 10 months ago

Log in to reply

Sure, I've added it in.

Chris Lewis - 10 months ago
Chew-Seong Cheong
Aug 14, 2020

Consider the Maclaurin series of e x e^x , where ω \omega denotes the cubic roots of unity. And note that ω 2 + ω + 1 = 0 \omega^2 + \omega + 1 = 0 and ω 3 = 1 \omega^3 =1 .

e x = 1 0 ! + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + x 6 6 ! + x 7 7 ! + e 1 = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + 1 6 ! + 1 7 ! + e ω = 1 0 ! + ω 1 ! + ω 2 2 ! + 1 3 ! + ω 4 ! + ω 2 5 ! + 1 6 ! + ω 7 ! + e ω 2 = 1 0 ! + ω 2 1 ! + ω 2 ! + 1 3 ! + ω 2 4 ! + ω 5 ! + 1 6 ! + ω 2 7 ! + \begin{aligned} e^x & = \frac 1{0!} + \frac x{1!} + \frac {x^2}{2!} + \frac {x^3}{3!} + \frac {x^4}{4!} + \frac {x^5}{5!} + \frac {x^6}{6!} + \frac {x^7}{7!} + \cdots \\ e^1 & = \frac 1{0!} + \frac 1{1!} + \frac 1{2!} + \frac 1{3!} + \frac 1{4!} + \frac 1{5!} + \frac 1{6!} + \frac 1{7!} + \cdots \\ e^\omega & = \frac 1{0!} + \frac \omega{1!} + \frac {\omega^2}{2!} + \frac 1{3!} + \frac \omega{4!} + \frac {\omega^2}{5!} + \frac 1{6!} + \frac \omega{7!} + \cdots \\ e^{\omega^2} & = \frac 1{0!} + \frac {\omega^2}{1!} + \frac \omega{2!} + \frac 1{3!} + \frac {\omega^2}{4!} + \frac \omega{5!} + \frac 1{6!} + \frac {\omega^2}{7!} + \cdots \end{aligned}

e + e ω + e ω 2 = 3 0 ! + 3 3 ! + 3 6 ! + 3 9 ! + n = 0 1 ( 3 n ) ! = e + e ω + e ω 2 3 Note that ω = e 2 π 3 i = e 1 2 + 3 2 i = e + e 1 2 ( e 3 2 i + e 3 2 i ) 3 and ω 2 = 1 2 3 2 i = e + 2 e 1 2 cos 3 2 3 1.168 \begin{aligned} \implies e + e^\omega + e^{\omega^2} & = \frac 3{0!} + \frac 3{3!} + \frac 3{6!} + \frac 3{9!} + \cdots \\ \implies \sum_{n=0}^\infty \frac 1{(3n)!} & = \frac {e + e^\omega + e^{\omega^2}}3 & \small \blue{\text{Note that }\omega = e^{\frac {2\pi}3i}= e^{-\frac 12 +\frac {\sqrt 3}2i }} \\ & = \frac {e+e^{-\frac 12}(e^{\frac {\sqrt 3}2i}+e^{-\frac {\sqrt 3}2i})}3 & \small \blue{\text{and }\omega^2 = - \frac 12 - \frac {\sqrt 3}2i} \\ & = \frac {e+2e^{-\frac 12}\cos \frac {\sqrt 3}2}3 \\ & \approx \boxed{1.168} \end{aligned}

Saúl Huerta
Aug 13, 2020

Observe that: e 2 π i 3 = 1 2 + i 3 2 e^{\frac{2\pi i}{3}}=-\frac{1}{2}+i\frac{\sqrt{3}}{2} ( e 2 π i 3 ) 2 = 1 2 i 3 2 (e^{\frac{2\pi i}{3}})^2=-\frac{1}{2}-i\frac{\sqrt{3}}{2} ( e 2 π i 3 ) 3 = 1 (e^{\frac{2\pi i}{3}})^3=1 Now: e 1 2 + i 3 2 = j = 0 ( 1 2 + i 3 2 ) j j ! = 1 + ( 1 2 + i 3 2 ) + 1 2 i 3 2 2 ! + 1 3 ! + 1 2 + i 3 2 4 ! + . . . e^{-\frac{1}{2}+i\frac{\sqrt{3}}{2}}=\sum_{j=0}^{\infty}\frac{(-\frac{1}{2}+i\frac{\sqrt{3}}{2})^j}{j!}=\orange{1}+\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)+\frac{-\frac{1}{2}-i\frac{\sqrt{3}}{2}}{2!}+\red{\frac{1}{3!}}+\frac{-\frac{1}{2}+i\frac{\sqrt{3}}{2}}{4!}+... e 1 2 i 3 2 = j = 0 ( 1 2 i 3 2 ) j j ! = 1 + ( 1 2 i 3 2 ) + 1 2 + i 3 2 2 ! + 1 3 ! + 1 2 i 3 2 4 ! + . . . e^{-\frac{1}{2}-i\frac{\sqrt{3}}{2}}=\sum_{j=0}^{\infty}\frac{(-\frac{1}{2}-i\frac{\sqrt{3}}{2})^j}{j!}=\orange{1}+\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)+\frac{-\frac{1}{2}+i\frac{\sqrt{3}}{2}}{2!}+\red{\frac{1}{3!}}+\frac{-\frac{1}{2}-i\frac{\sqrt{3}}{2}}{4!}+... e 1 = j = 0 1 j ! = 1 + 1 + 1 2 ! + 1 3 ! + 1 4 ! + . . . e^{1}=\sum_{j=0}^{\infty}\frac{1}{j!}=\orange{1}+1+\frac{1}{2!}+\red{\frac{1}{3!}}+\frac{1}{4!}+...

We can observe that the imaginary parts of the complex numbers will cancel out and the real parts add up to -1 which will cancel out with the terms of the taylor series of e e . This leaves us with the reciprocals of the factorials of the multiples of three added three times so:

n = 0 1 ( 3 n ) ! = e 1 2 + i 3 2 + e 1 2 i 3 2 + e 3 = e 2 + 2 e cos 3 2 3 e 1.168 \sum_{n=0}^{\infty}\frac{1}{(3n)!}=\frac{e^{-\frac{1}{2}+i\frac{\sqrt{3}}{2}}+e^{-\frac{1}{2}-i\frac{\sqrt{3}}{2}}+e}{3}=\frac{e^2+2 \sqrt{e} \cos{\frac{\sqrt{3}}{2}} }{3e}\approx\boxed{1.168}

In general:

n = 0 1 ( m n ) ! = 1 m k = 1 m e ω k : ω = e 2 π i m , m Z > 0 \sum_{n=0}^{\infty} \frac{1}{(mn)!}= \frac{1}{m} \sum_{k=1}^{m} e^{\omega^{k}}: \omega =e^{\frac{2\pi i}{m}}, m\in\mathbb{Z}>0

Daniel Ellesar
Sep 3, 2020

Let A ( x ) = n = 0 x 3 n ( 3 n ) ! A(x)=\sum_{n=0}^{\infty}\frac{x^{3n}}{(3n)!} .

Then it follows that A ( x ) = A ( x ) , A ( 0 ) = 1 , A ( 0 ) = A ( 0 ) = 0 A'''(x)=A(x), A(0)=1, A'(0)=A''(0)=0 .

This differential equation has general solution: A ( x ) = C 1 e x + C 2 e ζ x + C 3 e ζ 2 x A(x)=C_1e^x+C_2e^{\zeta x}+C_3e^{\zeta^2 x} , where ζ \zeta is a non-real third root of unity.

Substituting the boundary conditions gives C 1 + C 2 + C 3 = 1 C_1+C_2+C_3=1 , C 1 + ζ C 2 + ζ 2 C 3 = 0 C_1+\zeta C_2+\zeta^2 C_3=0 , and C 1 + ζ 2 C 2 + ζ C 3 = 0 C_1+\zeta^2 C_2+\zeta C_3=0 . Solving these gives C 1 = C 2 = C 3 = 1 3 C_1=C_2=C_3=\frac{1}{3} , and hence: A ( x ) = 1 3 ( e x + e ζ x + e ζ 2 x ) A(x)=\frac{1}{3}(e^x+e^{\zeta x}+e^{\zeta^2 x}) .

Now substituting the value x = 1 x=1 yields the solution to the problem: A ( 1 ) = 1 3 ( e + e ζ + e ζ 2 ) 1.17 A(1)=\frac{1}{3}(e+e^{\zeta}+e^{\zeta^2})\approx \boxed {1.17} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...