Reciprocal quadratic integral

Calculus Level 4

1 2 5 25 x 2 + 70 x + 50 d x \large \int_{-1}^{\sqrt2} \frac5{25x^2+70x+50} \, dx

If the integral above is equal to a b π \dfrac ab \pi , where a a and b b are coprime positive integers, find the value of a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anthony Muleta
Nov 16, 2015

Rewrite the integral as 1 2 5 25 x 2 + 70 x + 49 + 1 d x = 1 2 5 ( 5 x + 7 ) 2 + 1 d x \int _{ -1 }^{ \sqrt { 2 } }{ \frac { 5 }{ 25{ x }^{ 2 }+70x+49+1 } } dx\\ =\int _{ -1 }^{ \sqrt { 2 } }{ \frac { 5 }{ { (5x+7) }^{ 2 }+1 } dx } .

Now let u = 5 x + 7 u=5x+7

d u = 5 d x \rightarrow du=5dx

When x = 1 , u = 2 x=-1, u=2 and when x = 2 , u = 5 2 + 7 x=\sqrt {2}, u=5\sqrt {2} +7 .

Hence the integral is 2 5 2 + 7 1 1 + u 2 d u = [ tan 1 u ] 2 5 2 + 7 = tan 1 ( 5 2 + 7 ) tan 1 ( 2 ) \int _{ 2 }^{ 5\sqrt { 2 } +7 }{ \frac { 1 }{ 1+{ u }^{ 2 } } } du\\ ={ \left[ \tan ^{ -1 }{ u } \right] }_{ 2 }^{ 5\sqrt { 2 } +7 }\\ =\tan ^{ -1 }{ (5\sqrt { 2 } +7)-\tan ^{ -1 }{ (2) } } .

Now let A = tan 1 ( 5 2 + 7 ) A=\tan ^{ -1 }{ (5\sqrt { 2 } +7) } and B = tan 1 ( 2 ) B=\tan ^{ -1 }{ (2) } . Taking tan of both sides:

tan ( A B ) = tan A tan B 1 + tan A tan B = 5 2 + 7 2 1 + ( 5 2 + 7 ) 2 = 5 2 + 5 10 2 + 15 = 2 + 1 2 2 + 3 = 2 1 \tan { (A-B)=\frac { \tan { A } -\tan { B } }{ 1+\tan { A } \tan { B } } } \\ =\frac { 5\sqrt { 2 } +7-2 }{ 1+(5\sqrt { 2 } +7)2 } \\ =\frac { 5\sqrt { 2 } +5 }{ 10\sqrt { 2 } +15 } \\ =\frac { \sqrt { 2 } +1 }{ 2\sqrt { 2 } +3 } \\ =\sqrt { 2 } -1 .

Hence A B = tan 1 ( 2 1 ) A-B=\tan ^{ -1 }{(\sqrt {2} -1)} . To find this in the required form, consider tan 2 ( A B ) \tan {2(A-B)} :

tan 2 ( A B ) = 2 tan ( A B ) 1 tan 2 ( A B ) = 2 2 2 2 2 2 = 1. \tan { 2(A-B) } =\frac { 2\tan { (A-B) } }{ 1-\tan ^{ 2 }{ (A-B) } } \\ =\frac { 2\sqrt { 2 } -2 }{ 2\sqrt { 2 } -2 } \\ =1.

2 ( A B ) = tan 1 1 = π 4 A B = π 8 a = 1 , b = 8 , a + b = 9 2(A-B)=\tan ^{ -1 }{ 1 } \\ =\frac { \pi }{ 4 } \\ \therefore \quad A-B=\frac { \pi }{ 8 } \\ a=1,\quad b=8,\quad a+b=\boxed { 9 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...