Reciprocal Sum Equations!

Algebra Level 5

1 x + 1 x + 2 1 x + 4 1 x + 6 1 x + 8 1 x + 10 + 1 x + 12 + 1 x + 14 = 0 \large{\dfrac{1}{x} + \dfrac{1}{x+2} - \dfrac{1}{x+4} - \dfrac{1}{x+6} - \dfrac{1}{x+8} - \dfrac{1}{x+10} + \dfrac{1}{x+12} + \dfrac{1}{x+14} = 0}

Given that { A , B , C , D , E } \{A,B,C,D,E \} are the only five distinct real values of x x satisfying the above equation such that A A is an integer, and B , C , D , E B,C,D,E are irrational numbers of the form α ± β ± γ δ -\alpha \pm \sqrt{\beta \pm \gamma \sqrt{\delta}} , where α , β , γ , δ \alpha, \beta, \gamma, \delta are positive integers with β \beta and δ \delta being prime numbers.

Submit the value of A + α + β + γ + δ A+\alpha+\beta+\gamma+\delta as your answer.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Wow! Loved solving it!

1 x + 1 x + 2 1 x + 4 1 x + 6 1 x + 8 1 x + 10 + 1 x + 12 + 1 x + 14 = 0 ( 1 x + 1 x + 14 ) + ( 1 x + 12 + 1 x + 2 ) = ( 1 x + 4 + 1 x + 10 ) + ( 1 x + 6 + 1 x + 8 ) 2 x + 14 x ( x + 14 ) + 2 x + 14 ( x + 12 ) ( x + 2 ) = 2 x + 14 ( x + 4 ) ( x + 10 ) + 2 x + 14 ( x + 6 ) ( x + 8 ) \frac { 1 }{ x } +\frac { 1 }{ x+2 } -\frac { 1 }{ x+4 } -\frac { 1 }{ x+6 } -\frac { 1 }{ x+8 } -\frac { 1 }{ x+10 } +\frac { 1 }{ x+12 } +\frac { 1 }{ x+14 } =0\\ \\ (\frac { 1 }{ x } +\frac { 1 }{ x+14 } )\quad +\quad (\frac { 1 }{ x+12 } +\frac { 1 }{ x+2 } )\quad =\quad (\frac { 1 }{ x+4 } +\frac { 1 }{ x+10 } )\quad +\quad (\frac { 1 }{ x+6 } +\frac { 1 }{ x+8 } )\\ \\ \frac { 2x+14 }{ x(x+14) } +\frac { 2x+14 }{ (x+12)(x+2) } \quad =\quad \frac { 2x+14 }{ (x+4)(x+10) } +\frac { 2x+14 }{ (x+6)(x+8) }

Clearly, we can see that x = 7 x=-7 is a root of the equation...So, there's our A = 7 A = -7
Now, the next part is tricky...By looking at the sense of the next 4 roots, we can see that we surely need to form a quadratic equation somewhere so as to use the quadratic formula...Ok!

1 x ( x + 14 ) 1 ( x + 6 ) ( x + 8 ) = 1 ( x + 4 ) ( x + 10 ) 1 ( x + 12 ) ( x + 2 ) 1 x 2 + 14 x 1 x 2 + 14 x + 48 = 1 x 2 + 14 x + 40 1 x 2 + 14 x + 24 48 x ( x + 14 ) ( x + 6 ) ( x + 8 ) = 16 ( x + 4 ) ( x + 10 ) ( x + 2 ) ( x + 12 ) \frac { 1 }{ x(x+14) } -\frac { 1 }{ (x+6)(x+8) } \quad =\quad \frac { 1 }{ (x+4)(x+10) } -\frac { 1 }{ (x+12)(x+2) } \\ \\ \frac { 1 }{ { x }^{ 2 }+14x } -\frac { 1 }{ { x }^{ 2 }+14x+48 } \quad =\quad \frac { 1 }{ { x }^{ 2 }+14x+40 } -\frac { 1 }{ { x }^{ 2 }+14x+24 } \\ \\ \frac { 48 }{ x(x+14)(x+6)(x+8) } \quad =\quad \frac { -16 }{ (x+4)(x+10)(x+2)(x+12) } \\
Phew!

3 ( x + 4 ) ( x + 10 ) ( x + 2 ) ( x + 12 ) = x ( x + 14 ) ( x + 6 ) ( x + 8 ) x ( x + 14 ) ( x + 6 ) ( x + 8 ) + 3 ( x + 4 ) ( x + 10 ) ( x + 2 ) ( x + 12 ) = 0 ( x 2 + 14 x ) ( x 2 + 14 x + 48 ) + 3 ( x 2 + 14 x + 40 ) ( x 2 + 14 x + 24 ) = 0 ( ( x + 7 ) 2 49 ) ( ( x + 7 ) 2 1 ) + 3 ( ( x + 7 ) 2 9 ) ( ( x + 7 ) 2 25 ) = 0 -3(x+4)(x+10)(x+2)(x+12)\quad =\quad x(x+14)(x+6)(x+8)\\ \\ x(x+14)(x+6)(x+8)\quad +\quad 3(x+4)(x+10)(x+2)(x+12)\quad =\quad 0\\ \\ ({ x }^{ 2 }+14x)\quad ({ x }^{ 2 }+14x+48)\quad +\quad 3({ x }^{ 2 }+14x+40)({ x }^{ 2 }+14x+24)\quad =\quad 0\\ \\ { ((x+7) }^{ 2 }-49)({ (x+7) }^{ 2 }-1)\quad +\quad 3({ (x+7) }^{ 2 }-9)({ (x+7) }^{ 2 }-25)\quad =\quad 0

Now, there we have our quadratic... Put ( x + 7 ) 2 = y { (x+7) }^{ 2 }=y and we get

( y 49 ) ( y 1 ) + 3 ( y 25 ) ( y 9 ) = 0 y 2 50 y + 49 + 3 y 2 102 y + 675 = 0 4 y 2 152 y + 724 = 0 y 2 38 y + 181 = 0 { (y }-49)(y-1)\quad +\quad 3(y-25)(y-9)\quad =\quad 0\\ \\ { y }^{ 2 }-50y+49+3{ y }^{ 2 }-102y+675\quad =\quad 0\\ \\ { 4y }^{ 2 }-152y+724\quad =\quad 0\\ \\ { y }^{ 2 }-38y+181\quad =\quad 0

Now, using the quadratic formula:

y = 38 ± 720 2 ( x + 7 ) 2 = 19 ± 6 5 x + 7 = ± 19 ± 6 5 x = 7 ± 19 ± 6 5 y\quad =\quad \frac { 38\pm \sqrt { 720 } }{ 2 } \\ { (x+7) }^{ 2 }\quad =\quad 19\pm 6\sqrt { 5 } \\ \\ x+7\quad =\quad \pm \sqrt { 19\pm 6\sqrt { 5 } } \\ \\ x\quad =\quad -7\pm \sqrt { 19\pm 6\sqrt { 5 } }
Comparing.... A = 7 , α = 7 , β = 19 , γ = 6 , δ = 5 A + α + β + γ + δ = 30 A=-7,\quad \alpha =7,\quad \beta =19,\quad \gamma =6,\quad \delta =5\\ A+\alpha +\beta +\gamma +\delta \quad =\quad 30

TaDa!!!! :-p

Don't you think it's ( x + 7 ) 2 = 19 ± 6 5 (x+7)^2 = 19 \pm 6 \sqrt{5} ? Can you correct that as well as the steps following it. Because the final answer should be 7 ± 19 ± 6 5 -7 \pm \sqrt{19 \pm 6 \sqrt{5}} .

Nice solution, btw!

Satyajit Mohanty - 5 years, 8 months ago

Log in to reply

Yea, thanks!!! Will make the change:)

A Former Brilliant Member - 5 years, 8 months ago
Aareyan Manzoor
Sep 22, 2015

first, substitute x = y 7 x=y-7 ,then it becomes 1 y 7 + 1 y 5 1 y 3 1 y 1 1 y + 1 1 y + 3 + 1 y 5 + 1 y + 7 = 0 \dfrac{1}{y-7}+\dfrac{1}{y-5}-\dfrac{1}{y-3}-\dfrac{1}{y-1}-\dfrac{1}{y+1}-\dfrac{1}{y+3}+\dfrac{1}{y-5}+\dfrac{1}{y+7}=0 2 y y 2 7 2 + 2 y y 2 5 2 2 y y 2 3 2 2 y y 2 1 2 = 0 \dfrac{2y}{y^2-7^2}+\dfrac{2y}{y^2-5^2}-\dfrac{2y}{y^2-3^2}-\dfrac{2y}{y^2-1^2}=0 we see that one solution is y = 0 A = x = 7 y=0\rightarrow A=x=-7 after dividing the eq by 2y, 1 y 2 49 + 1 y 2 25 1 y 2 9 1 y 2 1 = 0 \dfrac{1}{y^2-49}+\dfrac{1}{y^2-25}-\dfrac{1}{y^2-9}-\dfrac{1}{y^2-1}=0 put z = y 2 z=y^2 : 1 z 49 + 1 z 25 1 z 9 1 z 1 = 0 \dfrac{1}{z-49}+\dfrac{1}{z-25}-\dfrac{1}{z-9}-\dfrac{1}{z-1}=0 64 z 2 2432 z + 11584 = 0 , z 49 , 25 , 9 , 1 64z^2-2432z+11584=0,z≠49,25,9,1 now, we can solve to get z = 19 ± 6 5 y 2 = 19 ± 6 5 y = ± 19 ± 6 5 x = 7 ± 19 ± 6 5 \begin{aligned} z = 19\pm 6\sqrt{5}\\ y^2=19\pm 6\sqrt{5}\\ y=\pm \sqrt{19\pm 6\sqrt{5}}\\ x=-7\pm \sqrt{19\pm 6\sqrt{5}} \end{aligned} so { α = 7 β = 19 γ = 6 δ = 5 A = 7 \begin{cases} \alpha =7\\ \beta = 19\\ \gamma=6\\ \delta = 5\\ A=-7 \end{cases} and 7 + 19 + 6 + 5 7 = 30 7+19+6+5-7=\boxed{30}

I did same...

Dev Sharma - 5 years, 5 months ago

awesome problem!

Aareyan Manzoor - 5 years, 8 months ago

Nice use of substitution!

Satyajit Mohanty - 5 years, 8 months ago

Same here (+1).

Aditya Sky - 5 years ago
Lu Chee Ket
Nov 23, 2015

Using Excel for Brute Force way,

x 5 + 35 x 4 + 452 x 3 + 2632 x 2 + 6600 x + 5040 = 0 x^5 + 35 x^4 + 452 x^3 + 2632 x^2 + 6600 x + 5040 = 0 is the equation.

Excel's figures correlated using 18 S.F. solver:

α \alpha = -1.306459110096890 7 + 19 + 6 5 \rightarrow -7 + \sqrt{19 + 6 \sqrt5}

β \beta = -4.637037424121732 7 + 19 6 5 \rightarrow -7 + \sqrt{19 - 6 \sqrt5}

γ \gamma = -7.00000000000000

δ \delta = -9.362962575878268 7 19 6 5 \rightarrow -7 - \sqrt{19 - 6 \sqrt5}

ϵ \epsilon = -12.69354088990311 7 19 + 6 5 \rightarrow -7 - \sqrt{19 + 6 \sqrt5}

Found by matching.

-7 + 7 + 19 + 6 + 5 = 30

Answer: 30 \boxed{30}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...