x 1 + x + 2 1 − x + 4 1 − x + 6 1 − x + 8 1 − x + 1 0 1 + x + 1 2 1 + x + 1 4 1 = 0
Given that { A , B , C , D , E } are the only five distinct real values of x satisfying the above equation such that A is an integer, and B , C , D , E are irrational numbers of the form − α ± β ± γ δ , where α , β , γ , δ are positive integers with β and δ being prime numbers.
Submit the value of A + α + β + γ + δ as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Don't you think it's ( x + 7 ) 2 = 1 9 ± 6 5 ? Can you correct that as well as the steps following it. Because the final answer should be − 7 ± 1 9 ± 6 5 .
Nice solution, btw!
Log in to reply
Yea, thanks!!! Will make the change:)
first, substitute x = y − 7 ,then it becomes y − 7 1 + y − 5 1 − y − 3 1 − y − 1 1 − y + 1 1 − y + 3 1 + y − 5 1 + y + 7 1 = 0 y 2 − 7 2 2 y + y 2 − 5 2 2 y − y 2 − 3 2 2 y − y 2 − 1 2 2 y = 0 we see that one solution is y = 0 → A = x = − 7 after dividing the eq by 2y, y 2 − 4 9 1 + y 2 − 2 5 1 − y 2 − 9 1 − y 2 − 1 1 = 0 put z = y 2 : z − 4 9 1 + z − 2 5 1 − z − 9 1 − z − 1 1 = 0 6 4 z 2 − 2 4 3 2 z + 1 1 5 8 4 = 0 , z = 4 9 , 2 5 , 9 , 1 now, we can solve to get z = 1 9 ± 6 5 y 2 = 1 9 ± 6 5 y = ± 1 9 ± 6 5 x = − 7 ± 1 9 ± 6 5 so ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ α = 7 β = 1 9 γ = 6 δ = 5 A = − 7 and 7 + 1 9 + 6 + 5 − 7 = 3 0
I did same...
awesome problem!
Nice use of substitution!
Same here (+1).
Using Excel for Brute Force way,
x 5 + 3 5 x 4 + 4 5 2 x 3 + 2 6 3 2 x 2 + 6 6 0 0 x + 5 0 4 0 = 0 is the equation.
Excel's figures correlated using 18 S.F. solver:
α = -1.306459110096890 → − 7 + 1 9 + 6 5
β = -4.637037424121732 → − 7 + 1 9 − 6 5
γ = -7.00000000000000
δ = -9.362962575878268 → − 7 − 1 9 − 6 5
ϵ = -12.69354088990311 → − 7 − 1 9 + 6 5
Found by matching.
-7 + 7 + 19 + 6 + 5 = 30
Answer: 3 0
Problem Loading...
Note Loading...
Set Loading...
Wow! Loved solving it!
x 1 + x + 2 1 − x + 4 1 − x + 6 1 − x + 8 1 − x + 1 0 1 + x + 1 2 1 + x + 1 4 1 = 0 ( x 1 + x + 1 4 1 ) + ( x + 1 2 1 + x + 2 1 ) = ( x + 4 1 + x + 1 0 1 ) + ( x + 6 1 + x + 8 1 ) x ( x + 1 4 ) 2 x + 1 4 + ( x + 1 2 ) ( x + 2 ) 2 x + 1 4 = ( x + 4 ) ( x + 1 0 ) 2 x + 1 4 + ( x + 6 ) ( x + 8 ) 2 x + 1 4
Clearly, we can see that x = − 7 is a root of the equation...So, there's our A = − 7
Now, the next part is tricky...By looking at the sense of the next 4 roots, we can see that we surely need to form a quadratic equation somewhere so as to use the quadratic formula...Ok!
x ( x + 1 4 ) 1 − ( x + 6 ) ( x + 8 ) 1 = ( x + 4 ) ( x + 1 0 ) 1 − ( x + 1 2 ) ( x + 2 ) 1 x 2 + 1 4 x 1 − x 2 + 1 4 x + 4 8 1 = x 2 + 1 4 x + 4 0 1 − x 2 + 1 4 x + 2 4 1 x ( x + 1 4 ) ( x + 6 ) ( x + 8 ) 4 8 = ( x + 4 ) ( x + 1 0 ) ( x + 2 ) ( x + 1 2 ) − 1 6
Phew!
− 3 ( x + 4 ) ( x + 1 0 ) ( x + 2 ) ( x + 1 2 ) = x ( x + 1 4 ) ( x + 6 ) ( x + 8 ) x ( x + 1 4 ) ( x + 6 ) ( x + 8 ) + 3 ( x + 4 ) ( x + 1 0 ) ( x + 2 ) ( x + 1 2 ) = 0 ( x 2 + 1 4 x ) ( x 2 + 1 4 x + 4 8 ) + 3 ( x 2 + 1 4 x + 4 0 ) ( x 2 + 1 4 x + 2 4 ) = 0 ( ( x + 7 ) 2 − 4 9 ) ( ( x + 7 ) 2 − 1 ) + 3 ( ( x + 7 ) 2 − 9 ) ( ( x + 7 ) 2 − 2 5 ) = 0
Now, there we have our quadratic... Put ( x + 7 ) 2 = y and we get
( y − 4 9 ) ( y − 1 ) + 3 ( y − 2 5 ) ( y − 9 ) = 0 y 2 − 5 0 y + 4 9 + 3 y 2 − 1 0 2 y + 6 7 5 = 0 4 y 2 − 1 5 2 y + 7 2 4 = 0 y 2 − 3 8 y + 1 8 1 = 0
Now, using the quadratic formula:
y = 2 3 8 ± 7 2 0 ( x + 7 ) 2 = 1 9 ± 6 5 x + 7 = ± 1 9 ± 6 5 x = − 7 ± 1 9 ± 6 5
Comparing.... A = − 7 , α = 7 , β = 1 9 , γ = 6 , δ = 5 A + α + β + γ + δ = 3 0
TaDa!!!! :-p