Reciprocal sum of roots

Level pending

For i = 1 , 2... , 2014 i=1,2...,2014 let α i \alpha_i and β i \beta_i be the roots of

x 2 2 x i 2 i = 0 x^2-2x-i^2-i=0 .

The value of

i = 1 2014 1 α i + 1 β i \displaystyle\sum_{i=1}^{2014}\frac{1}{\alpha_i}+\frac{1}{\beta_i}

can be expressed as a b -\frac{a}{b} , where a and b are coprime positive integers.What is the value of b-2014?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bogdan Simeonov
Jan 3, 2014

By Vieta's formulas we get that α i + β i = 2 \alpha_i+\beta_i=2 .

The sum i = 1 2014 1 α i + 1 β i \displaystyle\sum_{i=1}^{2014}\frac{1}{\alpha_i}+\frac{1}{\beta_i} = i = 1 2014 α i + β i α i . β i \displaystyle\sum_{i=1}^{2014}\frac{\alpha_i+\beta_i}{\alpha_i.\beta_i} . Also from Vieta, we get that α i . β i = i 2 i = i ( i + 1 ) \alpha_i.\beta_i=-i^2-i=-i(i+1) .

So we get for our initial sum that

i = 1 2014 1 α i + 1 β i = ( 2 ) . i = 1 2014 1 i ( i + 1 ) = ( 2 ) . 2014 2015 = 4028 2015 \displaystyle\sum_{i=1}^{2014}\frac{1}{\alpha_i}+\frac{1}{\beta_i}=(-2).\displaystyle\sum_{i=1}^{2014}\frac{1}{i(i+1)}=(-2).\frac{2014}{2015}=-\frac{4028}{2015} .

So b=2015 and b 2014 = 1 b-2014=\boxed1

How did you get that i = 1 n 1 i ( i + 1 ) = n n + 1 ? \displaystyle \sum_{i=1}^{n} \; \dfrac{1}{i(i+1)} = \dfrac{n}{n+1}?

Can you prove it beyond "deduction'?

Guilherme Dela Corte - 7 years, 5 months ago

Log in to reply

We use that 1 n ( n + 1 ) = 1 n 1 n + 1 \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} .

Then everything cancels except 1 1 2015 = 2014 2015 1-\frac{1}{2015}=\frac{2014}{2015}

Bogdan Simeonov - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...