Reciprocals of each other.

Algebra Level 1

Consider an arithmetic progression with terms a 1 , a 2 , a_1, a_2, \ldots and the sum of the first k k terms is S k S_k . If

a 13 = 1 11 , a 11 = 1 13 , a_{13} = \frac{1}{11} , a_{11} = \frac{1}{13},

then find S 143 S_{143} .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Jun 22, 2015

Let the first term and the common difference of the AP be a a and d d respectively. Then we have:

{ a 11 = 1 13 a 13 = 1 11 = a 11 + 2 d d = 1 11 1 13 2 = 1 143 \begin{cases} a_{11} = \dfrac{1}{13} \\ a_{13} = \dfrac{1}{11} = a_{11} + 2 d \quad \Rightarrow d = \dfrac {\frac{1}{11} - \frac{1}{13}}{2} = \dfrac{1} {143} \end{cases}

Now a 11 = a + 10 d = a + 10 143 = 1 13 = 11 143 a = 1 143 a_{11} = a + 10d = a + \dfrac{10}{143} = \dfrac{1}{13} = \dfrac{11}{143} \quad \Rightarrow a = \dfrac{1}{143}

S m n = S 143 = m n 2 ( 2 a + ( m n 1 ) d ) = 143 2 ( 2 143 + 142 143 ) = 72 S_{mn} = S_{143} = \dfrac {mn}{2} \left(2a + (mn-1)d \right) = \dfrac {143}{2} \left(\dfrac{2}{143} + \dfrac{142}{143} \right) = \boxed{72}

Shivamani Patil
Oct 4, 2014

We have a + ( m 1 ) d = 1 n , a + ( n 1 ) d = 1 m a+(m-1)d=\frac { 1 }{ n } ,\quad a+(n-1)d=\frac { 1 }{ m }

Subtracting 2nd eqn from 1st we get

1 n 1 m = ( m 1 ) d ( n 1 ) d = ( m n ) d = m n n m \frac { 1 }{ n } -\frac { 1 }{ m } =(m-1)d-(n-1)d=(m-n)d=\frac { m-n }{ nm }

1 m n = d \Rightarrow \frac { 1 }{ mn } =d

Therefore we have

a + ( m 1 ) 1 m n = 1 n a+(m-1)\frac { 1 }{ mn } =\frac { 1 }{ n }

a = 1 m n \Rightarrow a=\frac { 1 }{ mn }

Now we have

S m n = m n 2 ( 2 a + ( m n 1 ) d ) { S }_{ mn }=\frac { mn }{ 2 } \left( 2a+\left( mn-1 \right) d \right)

S m n = m n 2 ( 2 m n + ( m n 1 ) 1 m n ) { S }_{ mn }=\frac { mn }{ 2 } \left( \frac { 2 }{ mn } +\left( mn-1 \right) \frac { 1 }{ mn } \quad \right)

S m n = 1 + m n 1 m n × m n 2 = 1 2 ( m n + 1 ) { S }_{ mn }=1+\frac { mn-1 }{ mn } \times \frac { mn }{ 2 } =\frac { 1 }{ 2 } \left( mn+1 \right)

Now evaluating 1 2 ( m n + 1 ) \frac { 1 }{ 2 } \left( mn+1 \right) ) at m = 13 , n = 11 m=13,n=11 we get answer as 72 72 .

Another interesting fact it is that,

a m n = 1 m n + ( m n 1 ) 1 m n = 1 m n + 1 1 m n = 1 a_{mn}=\frac{1}{mn}+(mn-1)\frac{1}{mn}=\frac{1}{mn}+1-\frac{1}{mn}=1

Cleres Cupertino - 5 years, 10 months ago
Sai Ram
Jul 28, 2015

We have a + ( m 1 ) d = 1 n , a + ( n 1 ) d = 1 m a+(m-1)d=\frac { 1 }{ n } ,\quad a+(n-1)d=\frac { 1 }{ m }

Subtracting 2nd eqn from 1st we get

1 n 1 m = ( m 1 ) d ( n 1 ) d = ( m n ) d = m n n m \frac { 1 }{ n } -\frac { 1 }{ m } =(m-1)d-(n-1)d=(m-n)d=\frac { m-n }{ nm }

1 m n = d \Rightarrow \frac { 1 }{ mn } =d

Therefore we have

a + ( m 1 ) 1 m n = 1 n a+(m-1)\frac { 1 }{ mn } =\frac { 1 }{ n }

a = 1 m n \Rightarrow a=\frac { 1 }{ mn }

Now we have

S m n = m n 2 ( 2 a + ( m n 1 ) d ) { S }_{ mn }=\frac { mn }{ 2 } \left( 2a+\left( mn-1 \right) d \right)

S m n = m n 2 ( 2 m n + ( m n 1 ) 1 m n ) { S }_{ mn }=\frac { mn }{ 2 } \left( \frac { 2 }{ mn } +\left( mn-1 \right) \frac { 1 }{ mn } \quad \right)

S m n = 1 + m n 1 m n × m n 2 = 1 2 ( m n + 1 ) { S }_{ mn }=1+\frac { mn-1 }{ mn } \times \frac { mn }{ 2 } =\frac { 1 }{ 2 } \left( mn+1 \right)

Now evaluating 1 2 ( m n + 1 ) \frac { 1 }{ 2 } \left( mn+1 \right) ) at m = 13 , n = 11 m=13,n=11 we get answer as 72 72 .

Hypergeo H.
Oct 16, 2020

a 13 = 1 11 = 13 143 a 11 = 1 13 = 11 143 a n = n 143 S n = 1 143 n ( n + 1 ) 2 S 143 = 1 143 143 ( 144 ) 2 = 72. a_{13}=\frac 1{11}= \frac {13}{143}\\\\ a_{11}=\frac 1{13}=\frac {11}{143}\\\\ \Rightarrow a_n=\frac n{143}\\\\ \Rightarrow S_n=\frac 1{143} \cdot \frac {n(n+1)}2\\\\ S_{143}=\frac 1{143}\cdot \frac {143(144)}2=72.

Kristian Thulin
Dec 16, 2018

Notice that 143 = 11 13 143 = 11\cdot13 , so

a 11 = 1 13 = 11 143 a_{11} = \frac{1}{13} = \frac{11}{143} and a 13 = 1 11 = 13 143 a_{13} = \frac{1}{11} = \frac{13}{143} .

From this it is easy to see that d = 1 143 d = \frac{1}{143} and a 143 = 143 143 = 1 a_{143} = \frac{143}{143} = 1

S 143 = 143 ( 1 143 + 1 ) 2 = 144 2 = 72 S_{143} = \frac{143(\frac{1}{143} + 1)}{2} = \frac{144}{2} = 72

Zico Quintina
Apr 5, 2018

We create a second arithmetic progression, { b n } \left\{b_n\right\} , such that for all i , b i = 143 a i i,\,b_i=143 a_i . Then b 11 = 11 and b 13 = 13 b_{11}=11 \text{ and } b_{13} = 13 . So clearly { b n } = N \left\{b_n\right\} = \mathbb{N} .

Let B k B_k be the sum of the first k k terms of { b n } \left\{b_n\right\} . Then B 143 = 1 + 2 + 3 + + 143 = ( 143 ) ( 144 ) 2 B_{143} = 1 + 2 + 3 + \dots + 143 = \dfrac{(143)(144)}{2} .

But clearly, for all k , B k = 143 S k k,\,B_k = 143 S_k . Thus S k = 144 2 = 72 S_k = \dfrac{144}{2} = \boxed{72} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...