Reciprocated terms

Algebra Level 3

64 x 6 + 1 729 x 6 64x^6 +\dfrac{1}{729x^6} If 3 x + 1 2 x = 3 \small{3x}+\frac{1}{2x}=3 and the value of the above expression is true for positive co-prime integers a a and b b which is written as a b \dfrac{a}{b} . Find the value of a + b a+b .


Similar problem .

121 0 443 55 97 105

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 12, 2018

We have that 3 x + 1 2 x = 3 2 x = 6 x 1 3 x 3x+\dfrac{1}{2x} =3 \implies 2x= \dfrac{6x-1}{3x} Let p = 2 x p= 2x and q = 1 3 x q =\frac{1} {3x} and we need to evaluate 64 x 6 + 1 729 x 6 = p 6 + q 6 = ( p 2 ) 3 + ( q 2 ) 3 E = ( p 2 + q 2 ) ( p 4 + q 4 p 2 . q 2 ) = ( ( p + q ) 2 2 p q ) ( ( p 2 + q 2 ) 2 2 p 2 q 2 p 2 q 2 ) E = ( ( 2 x + 1 3 x ) 2 2.2 x 3 x ) ( ( ( p + q ) 2 2 p q ) 2 3 p 2 q 2 ) E = ( ( 2 x + 1 3 x ) 2 2.2 x 3 x ) ( ( ( 2 x + 1 3 x ) 2 2.2 x 3 x ) 2 3.4 x 2 9 x 2 ) ( 1 ) 64x^6+\dfrac{1}{729x^6} =p^6 +q^6 = (p^2)^3 +(q^2)^3 \\ E = \left(p^2 +q^2\right)\left(p^4 +q^4-p^2.q^2\right) =\left( \left(p+q\right)^2 -2pq\right)\left(\left(p^2+q^2\right)^2 -2p^2q^2-p^2q^2\right) \\ E = \left( \left(2x+\dfrac{1}{3x}\right)^2 -\dfrac{2.2x}{3x}\right)\left(\left(\left(p+q\right)^2- 2pq\right)^2-3p^2q^2\right)\\ E = \left(\left(2x+\dfrac{1}{3x}\right)^2 -\dfrac{2.2x}{3x}\right)\left(\left(\left(2x+\dfrac{1}{3x}\right)^2- \dfrac{2.2x}{3x} \right)^2-\dfrac{3.4x^2}{9x^2}\right)\cdots (1) Now plugging the value of 2 x = 6 x 1 3 x 2x=\frac{6x-1}{3x} in equation 1 we get E = ( ( 6 x 1 3 x + 1 3 x ) 2 2.2 3 ) ( ( ( 6 x 1 3 x + 1 3 x ) 2 2.2 3 ) 2 12 9 ) E = ( 4 4 3 ) ( ( 4 4 3 ) 2 12 9 ) = 8 3 ( 8 2 9 12 9 ) = 416 27 E = \left(\left(\dfrac{6x-1}{3x} +\dfrac{1}{3x}\right)^2 -\dfrac{2.2}{3}\right)\left(\left(\left(\dfrac{6x-1}{3x} +\dfrac{1}{3x}\right)^2- \dfrac{2.2}{3} \right)^2-\dfrac{12}{9} \right)\\ E = \left(4-\dfrac{4}{3}\right)\left(\left(4-\dfrac{4}{3}\right)^2 -\dfrac{12}{9} \right) = \dfrac{8}{3} \left( \dfrac{8^2}{9} -\dfrac{12}{9}\right)=\dfrac{416}{27} Hence , value of a + b = 443 a+b=443 .

I guess the calculation in the final step has went wrong We will get 416/27 and not 112/9 8(64-12) / 27 = (8×52)/27 Please check once and let me know if Im wrong

Adithya K Rao - 3 years ago

Log in to reply

Oops!!! Thank you a lot to point out the mistake . I mistakenly did that 52 9 \dfrac{52}{9} is reduced to 14 3 \dfrac{14}{3} .

Naren Bhandari - 3 years ago

Thanks. I've updated the option and answer to reflect this.

In the future, if you have concerns about a problem's wording/clarity/etc., you can report the problem. See how here .

Brilliant Mathematics Staff - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...