Reciprocators

Algebra Level 3

What is x + y x+y ?

{ a b x = b a a b + y = b a \large \begin{cases} \dfrac{a}{b}x = \dfrac{b}{a} \\ \dfrac{a}{b} + y = \dfrac{b}{a} \end{cases}

a 3 + a b 2 b 3 a 2 b \frac{-a^{3}+ab^{2}-b^{3}}{a^{2}b} b 2 a 2 b a a b \frac{b^{2}}{a^{2}}-\frac{b}{a}-\frac{a}{b} b 2 a 2 + b a + a b \frac{b^{2}}{a^{2}}+\frac{b}{a}+\frac{a}{b} a 3 a b 2 b 3 a 2 b -\frac{a^{3}-ab^{2}-b^{3}}{a^{2}b}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kaizen Cyrus
May 14, 2019

Solving for x x : a b x = b a x = b 2 a 2 \begin{aligned} \frac{a}{b}x = & \frac{b}{a} \\ x = & \frac{b^{2}}{a^{2}} \end{aligned}

Solving for y y : a b + y = b a a b + y a b = b a a b y = b a a b y = b 2 a 2 a b \begin{aligned} \frac{a}{b} + y = & \frac{b}{a} \\ \frac{a}{b} + y - \frac{a}{b} = & \frac{b}{a} - \frac{a}{b} \\ y = & \frac{b}{a} - \frac{a}{b} \\ y = & \frac{b^{2}-a^{2}}{ab} \end{aligned}

Solving for x + y x+y : b 2 a 2 + b 2 a 2 a b = b 3 a 2 b + a b 2 a 3 a 2 b = a 3 + a b 2 + b 3 a 2 b \frac{b^{2}}{a^{2}} + \frac{b^{2}-a^{2}}{ab} = \frac{b^{3}}{a^{2}b} + \frac{ab^{2}-a^{3}}{a^{2}b} = \frac{-a^{3}+ab^{2}+b^{3}}{a^{2}b}

a 3 + a b 2 + b 3 a 2 b \implies \frac{-a^{3}+ab^{2}+b^{3}}{a^{2}b} is equal to a 3 a b 2 b 3 a 2 b \boxed{-\frac{a^{3}-ab^{2}-b^{3}}{a^{2}b}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...