Recognize the Point

Geometry Level 3

The point P P is in A B C \triangle ABC . If P A 2 sin A + P B 2 sin B + P C 2 sin C \overline{PA}^2 \sin A + \overline{PB}^2 \sin B + \overline{PC}^2 \sin C is minimum then:

P is Circumcentre P is incentre P is centroid P is Orthocentre

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Oct 19, 2017

In what follows, V A , V B , V C V_A, V_B, V_C and P P are 2-D position vectors representing the position of the three vertices of the triangle and point P. While A , B A , B and C C are used to denote the angles of the triangle.

The given function can be written as,

f ( P ) = ( P V A ) T ( P V A ) sin A + ( P V B ) T ( P V B ) sin B + ( P V C ) T ( P V C ) sin C f(P) = (P - V_A)^T(P - V_A) \sin A + (P - V_B)^T (P-V_B) \sin B + (P - V_C)^T (P - V_C) \sin C

This is a quadratic function of the vector P P . Simplifying the above expression results in,

f ( P ) = α P T P 2 P T V 0 + β f(P) = \alpha P^T P - 2 P^T V_0 + \beta

where,

α = sin A + sin B + sin C \alpha = \sin A + \sin B + \sin C ,

V 0 = ( sin A ) V A + ( sin B ) V B + ( sin C ) V C V_0 = (\sin A) V_A+ (\sin B) V_B + (\sin C) V_C

and

β = ( sin A ) V A T V A + ( sin B ) V B T V B + ( sin C ) V C T V C \beta = (\sin A) {V_A}^T {V_A} + (\sin B) {V_B}^T{V_B} + (\sin C) {V_C}^T{V_C}

Using an approach very similar to completing the square for scalars, we obtain,

f ( P ) = α P T P 2 P T V 0 + β = α ( P 1 α V 0 ) T ( P 1 α V 0 ) + β 1 α V 0 T V 0 f(P) = \alpha P^T P - 2 P^T V_0 + \beta = \alpha (P - \dfrac{1}{\alpha} V_0)^T (P - \dfrac{1}{\alpha} V_0) + \beta - \dfrac{1}{\alpha} {V_0}^T{V_0}

The minimum of this quadratic function occurs at

P = 1 α V 0 = ( sin A ) V A + ( sin B ) V B + ( sin C ) V C sin A + sin B + sin C P = \dfrac{1}{\alpha} V_0 = \dfrac{ (\sin A) V_A+ (\sin B) V_B + (\sin C) V_C }{\sin A + \sin B + \sin C}

From the Law of Sines, this reduces to

P = a V A + b V B + c V C a + b + c P = \dfrac{ a V_A+ b V_B + c V_C }{a+b+c}

This is the well-known expression for the coordinates of the incenter. See here for example.

Therefore, the correct choice is: Incenter.

Thanks for your solution, Sir

Sunny Dhondkar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...