Let be an equilateral triangle . Let be on , and be on and be outside such that and . Let intersect at and intersect at . It is known and . Find the length of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that ∠ K J G = ∠ D J C = ∠ B A C = 6 0 ∘ ⟹ J G = 1 6 cos 6 0 ∘ = 8 . Also ∠ D J C = ∠ J C D = 6 0 ∘ implies △ D J C is equilateral, so E F = D G = D J + J G = D C + J G = 2 5 + 8 = 3 3 as desired.