If ∫ 0 ∞ e 2 π x − 1 sin ( 2 0 1 9 x ) d x = a 1 coth ( c b ) − b c 1 where a , b , c are positive integers and c being prime number . Find the value of a + b + c .
This problem is modified one of the problem here
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This solution is base on another identity
n = − ∞ ∑ ∞ n 2 + a 2 1 = a π coth ( π a )
and you can find the proof in here: Calculate a special infinite series .
Since for x ≥ 1 , we always have e 2 π x > 2 , so e 2 π x − 1 ≥ 2 1 e 2 π x for all x ≥ 1 .
and since ∣ sin ( 2 0 1 9 x ) ∣ ≤ 1 , we see
∣ ∣ ∣ ∣ ∫ 1 M e 2 π x − 1 sin ( 2 0 1 9 x ) d x ∣ ∣ ∣ ∣ ≤ ∫ 1 M 2 e − 2 π x d x = π 1 ( e − 2 π − e − 2 π M )
which saying that the improper integral converges, therefore we can using a geometric series to expand ( e 2 π x − 1 ) − 1 , which leads to
I = ∫ 0 ∞ 1 − e − 2 π x sin ( 2 0 1 9 x ) ⋅ e − 2 π x d x = ∫ 0 ∞ sin ( 2 0 1 9 x ) ( e − 2 π x + e − 4 π x + e − 6 π x + ⋯ ) d x = ∫ 0 ∞ r = 1 ∑ ∞ e − 2 π r x sin ( 2 0 1 9 x ) d x .
Note that the Laplace transform of sin b x is given by G ( b , s ) = L { sin ( b x ) } = ∫ 0 ∞ e − s x sin ( b x ) d x = s 2 + b 2 b ,
Since I converges, we can exchange the integral sign and summation sign, we have
I = r = 1 ∑ ∞ ∫ 0 ∞ e − 2 π r x sin ( 2 0 1 9 x ) d x = r = 1 ∑ ∞ G ( 2 0 1 9 , 2 π r ) = r = 1 ∑ ∞ ( 2 π r ) 2 + 2 0 1 9 2 2 0 1 9 = 4 π 2 2 0 1 9 r = 1 ∑ ∞ r 2 + ( 2 0 1 9 / 2 π ) 2 1 = 8 π 2 2 0 1 9 [ r = − ∞ ∑ ∞ r 2 + ( 2 0 1 9 / 2 π ) 2 1 − 2 0 1 9 2 4 π 2 ] = 8 π 2 2 0 1 9 [ 2 0 1 9 2 π 2 coth ( 2 2 0 1 9 ) − 2 0 1 9 2 4 π 2 ] = 4 1 coth ( 2 2 0 1 9 ) − 4 0 3 8 1
which gives that a = 4 , b = 2 0 1 9 , c = 2 , hence 4 + 2 0 1 9 + 2 = 2 0 2 5 = 4 5 .
I hope there is a more elegant approach, something like a direct application of contour integral will be the best!
Wonderful solution. A correction is required in your solution. :)
The answer should be 4 1 coth ( 2 2 0 1 9 ) − 4 0 3 8 1 This problem is generalizable one. 😀
You're right, I bring the wrong formula from another paper. Thanks for correcting me!
Problem Loading...
Note Loading...
Set Loading...
∫ 0 ∞ e 2 π x − 1 sin ( 2 0 1 9 x ) d x = ∫ 0 ∞ e 2 π x − 1 1 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 2 0 1 9 ) 2 n + 1 d x = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 2 0 1 9 ) 2 n + 1 ∫ 0 ∞ e 2 π x − 1 x 2 n + 1 d x = 4 π 2 1 n = 0 ∑ ∞ ( 4 π 2 ) n ( − 1 ) n ( 2 0 1 9 ) 2 n + 1 ζ ( 2 n + 2 ) = 4 π 2 2 0 1 9 k = 1 ∑ ∞ n = 0 ∑ ∞ ( 4 π 2 ) n ( k ) 2 n + 2 ( − 1 ) n ( 2 0 1 9 2 ) n = 4 π 2 2 0 1 9 k = 1 ∑ ∞ k 2 1 n = 0 ∑ ∞ ( 4 π 2 ) n ( k 2 ) n ( − 1 ) n ( 2 0 1 9 2 ) n = 4 π 2 2 0 1 9 k = 1 ∑ ∞ k 2 + 4 π 2 2 0 1 9 2 1 = 4 1 coth ( 2 2 0 1 9 ) − 4 0 3 8 1 Sine Series sin ( 2 0 1 9 x ) = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 2 0 1 9 ) 2 n + 1 Gamma Zeta Relation ∫ 0 ∞ e 2 π x − 1 x 2 n + 1 d x = ( 2 π ) 2 n + 2 1 Γ ( 2 n + 2 ) ζ ( 2 n + 2 ) ζ ( 2 n + 2 ) = k = 1 ∑ ∞ k 2 n + 2 1 Geometric series n = 0 ∑ ∞ ( 4 π 2 ) n ( k 2 ) n ( − 1 ) n ( 2 0 1 9 2 ) n = 4 π 2 k 2 + 2 0 1 9 2 4 π 2 k 2 k = 1 ∑ ∞ k 2 + 4 π 2 2 0 1 9 2 1 = ( 2 0 1 9 π 2 coth ( 2 2 0 1 9 ) − 2 0 1 9 2 2 π 2 ) so we get a = 4 , b = 2 0 1 9 , c = 2 a + b + c = 2 0 2 5 = 4 5