Pi but why?

Calculus Level 5

If 0 sin ( 2019 x ) e 2 π x 1 d x = 1 a coth ( b c ) 1 b c \int_0^{\infty} \dfrac{\sin (2019x)}{ e^{2\pi x}-1}\,dx = \dfrac{ 1}{a} \coth \left(\dfrac{b}{c}\right)-\dfrac{1}{bc} where a , b , c a,b, c are positive integers and c c being prime number . Find the value of a + b + c \sqrt{a+b+c} .

This problem is modified one of the problem here


The answer is 45.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Shahabudeen
May 30, 2020

0 sin ( 2019 x ) e 2 π x 1 d x = 0 1 e 2 π x 1 n = 0 ( 1 ) n ( 2019 ) 2 n + 1 ( 2 n + 1 ) ! d x Sine Series sin ( 2019 x ) = n = 0 ( 1 ) n ( 2019 ) 2 n + 1 ( 2 n + 1 ) ! = n = 0 ( 1 ) n ( 2019 ) 2 n + 1 ( 2 n + 1 ) ! 0 x 2 n + 1 e 2 π x 1 d x Gamma Zeta Relation 0 x 2 n + 1 e 2 π x 1 d x = 1 ( 2 π ) 2 n + 2 Γ ( 2 n + 2 ) ζ ( 2 n + 2 ) = 1 4 π 2 n = 0 ( 1 ) n ( 2019 ) 2 n + 1 ( 4 π 2 ) n ζ ( 2 n + 2 ) ζ ( 2 n + 2 ) = k = 1 1 k 2 n + 2 = 2019 4 π 2 k = 1 n = 0 ( 1 ) n ( 2019 2 ) n ( 4 π 2 ) n ( k ) 2 n + 2 = 2019 4 π 2 k = 1 1 k 2 n = 0 ( 1 ) n ( 2019 2 ) n ( 4 π 2 ) n ( k 2 ) n Geometric series n = 0 ( 1 ) n ( 2019 2 ) n ( 4 π 2 ) n ( k 2 ) n = 4 π 2 k 2 4 π 2 k 2 + 201 9 2 = 2019 4 π 2 k = 1 1 k 2 + 201 9 2 4 π 2 k = 1 1 k 2 + 2019 2 4 π 2 = ( π 2 2019 coth ( 2019 2 ) 2 π 2 2019 2 ) = 1 4 coth ( 2019 2 ) 1 4038 \begin{aligned} \int _{ 0 }^{ \infty }{ \frac { \sin \left( 2019x \right) }{ { e }^{ 2\pi x }-1 } } dx&=\int _{ 0 }^{ \infty }{ \frac { 1 }{ { e }^{ 2\pi x }-1 } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( 2019 \right) }^{ 2n+1 } }{ \left( 2n+1 \right) ! }dx }&&&&&&&&&&&&&&\textcolor{#E81990}{\textrm{Sine Series}\quad\sin \left( 2019x \right) =\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( 2019 \right) }^{ 2n+1 } }{ \left( 2n+1 \right) ! } } } \\&=\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( 2019 \right) }^{ 2n+1 } }{ \left( 2n+1 \right) ! } } \int _{ 0 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ { e }^{ 2\pi x }-1 }dx } &&&&&&&&&&&&&&\textcolor{#20A900}{\textrm{Gamma Zeta Relation}\quad\int _{ 0 }^{ \infty }{ \frac { { x }^{ 2n+1 } }{ { e }^{ 2\pi x }-1 } } dx=\frac { 1 }{ { \left( 2\pi \right) }^{ 2n+2 } } \Gamma \left( 2n+2 \right) \zeta \left( 2n+2 \right) } \\&=\frac { 1 }{ { 4\pi }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( 2019 \right) }^{ 2n+1 } }{ { \left( { 4\pi }^{ 2 } \right) }^{ n } } } \zeta \left( 2n+2 \right)&&&&&&&&&&&&&&\textcolor{#20A900}{\zeta \left( 2n+2 \right) =\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2n+2 } } } }\\&=\frac { 2019 }{ 4{ \pi }^{ 2 } } \sum _{ k=1 }^{ \infty }{ \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( { 2019 }^{ 2 } \right) }^{ n } }{ { \left( 4{ \pi }^{ 2 } \right) }^{ n }{ \left( { k } \right) }^{ 2n+2 } } } }\\&=\frac { 2019 }{ 4{ \pi }^{ 2 } } \sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( { 2019 }^{ 2 } \right) }^{ n } }{ { \left( 4{ \pi }^{ 2 } \right) }^{ n }{ \left( { { k }^{ 2 } } \right) }^{ n } } } } &&&&&&&&&&&&&&\textcolor{#E81990} {\textrm{Geometric series}\quad{ \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ \left( { 2019 }^{ 2 } \right) }^{ n } }{ { \left( 4{ \pi }^{ 2 } \right) }^{ n }{ \left( { { k }^{ 2 } } \right) }^{ n } } =\frac { { 4\pi }^{ 2 }{ k }^{ 2 } }{ { 4\pi }^{ 2 }{ k }^{ 2 }+2019^{2} } } }}\\&=\frac { 2019 }{ 4{ \pi }^{ 2 } } \sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 }+\frac { 2019^{2} }{ { 4\pi }^{ 2 } } } } &&&&&&&&&&&&&&\textcolor{#20A900}{\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 }+\frac { { 2019 }^{ 2 } }{ { 4\pi }^{ 2 } } } } =\left( \frac { \pi ^{ 2 } }{ 2019 } \coth \left( \frac { 2019 }{ 2 } \right) -\frac { 2{ \pi }^{ 2 } }{ { 2019 }^{ 2 } } \right) }\\&=\frac { 1 }{ 4 } \coth \left( \frac { 2019 }{ 2 } \right) -\frac { 1 }{ 4038 } \end{aligned} so we get a = 4 , b = 2019 , c = 2 a=4,b=2019,c=2 a + b + c = 2025 = 45 \boxed{\sqrt { a+b+c } =\sqrt { 2025 } =45}

Kelvin Hong
Jul 23, 2019

This solution is base on another identity

n = 1 n 2 + a 2 = π a coth ( π a ) \sum_{n=-\infty}^\infty \dfrac1{n^2+a^2}=\dfrac\pi{a}\coth(\pi a)

and you can find the proof in here: Calculate a special infinite series .

Since for x 1 x\geq 1 , we always have e 2 π x > 2 e^{2\pi x}> 2 , so e 2 π x 1 1 2 e 2 π x for all x 1. e^{2\pi x}-1\geq \dfrac12e^{2\pi x}\quad\text{ for all }x\geq 1.

and since sin ( 2019 x ) 1 |\sin(2019x)|\leq 1 , we see

1 M sin ( 2019 x ) e 2 π x 1 d x 1 M 2 e 2 π x d x = 1 π ( e 2 π e 2 π M ) \bigg|\int_1^M \dfrac{\sin(2019x)}{e^{2\pi x}-1}dx\bigg|\leq \int_1^M 2e^{-2\pi x}dx=\dfrac1\pi(e^{-2\pi }-e^{-2\pi M})

which saying that the improper integral converges, therefore we can using a geometric series to expand ( e 2 π x 1 ) 1 (e^{2\pi x}-1)^{-1} , which leads to

I = 0 sin ( 2019 x ) 1 e 2 π x e 2 π x d x = 0 sin ( 2019 x ) ( e 2 π x + e 4 π x + e 6 π x + ) d x = 0 r = 1 e 2 π r x sin ( 2019 x ) d x . I=\int_0^\infty \dfrac{\sin(2019x)}{1-e^{-2\pi x}}\cdot e^{-2\pi x}dx=\int_0^\infty \sin(2019x)(e^{-2\pi x}+e^{-4\pi x}+e^{-6\pi x}+\cdots)dx=\int_0^\infty \sum_{r=1}^\infty e^{-2\pi rx}\sin(2019x)dx.

Note that the Laplace transform of sin b x \sin bx is given by G ( b , s ) = L { sin ( b x ) } = 0 e s x sin ( b x ) d x = b s 2 + b 2 , G(b,s)=\mathfrak L\{\sin(bx)\}=\int_0^\infty e^{-sx}\sin(bx)dx=\dfrac{b}{s^2+b^2},

Since I I converges, we can exchange the integral sign and summation sign, we have

I = r = 1 0 e 2 π r x sin ( 2019 x ) d x = r = 1 G ( 2019 , 2 π r ) = r = 1 2019 ( 2 π r ) 2 + 201 9 2 = 2019 4 π 2 r = 1 1 r 2 + ( 2019 / 2 π ) 2 = 2019 8 π 2 [ r = 1 r 2 + ( 2019 / 2 π ) 2 4 π 2 201 9 2 ] = 2019 8 π 2 [ 2 π 2 2019 coth ( 2019 2 ) 4 π 2 201 9 2 ] = 1 4 coth ( 2019 2 ) 1 4038 \begin{aligned}I&=\sum_{r=1}^\infty \int_0^\infty e^{-2\pi rx}\sin(2019x)dx\\ &=\sum_{r=1}^\infty G(2019,2\pi r)\\ &=\sum_{r=1}^\infty \dfrac{2019}{(2\pi r)^2+2019^2}\\ &=\dfrac{2019}{4\pi^2}\sum_{r=1}^\infty \dfrac1{r^2+(2019/2\pi)^2}\\ &=\dfrac{2019}{8\pi^2}\bigg[\sum_{r=-\infty}^\infty \dfrac1{r^2+(2019/2\pi)^2}-\dfrac{4\pi^2}{2019^2}\bigg]\\ &=\dfrac{2019}{8\pi^2}\bigg[\dfrac{2\pi^2}{2019}\coth \bigg(\dfrac{2019}2\bigg)-\dfrac{4\pi^2}{2019^2}\bigg]\\ &=\dfrac14\coth\bigg(\dfrac{2019}2\bigg)-\dfrac1{4038}\end{aligned}

which gives that a = 4 , b = 2019 , c = 2 a=4,b=2019,c=2 , hence 4 + 2019 + 2 = 2025 = 45 \sqrt{4+2019+2}=\sqrt{2025}=\boxed{45} .

I hope there is a more elegant approach, something like a direct application of contour integral will be the best!

Wonderful solution. A correction is required in your solution. :)

The answer should be 1 4 coth ( 2019 2 ) 1 4038 \dfrac{1}{4} \coth\left(\dfrac{2019}{2} \right)-\dfrac{1}{4038} This problem is generalizable one. 😀

Naren Bhandari - 1 year, 10 months ago

You're right, I bring the wrong formula from another paper. Thanks for correcting me!

Kelvin Hong - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...