This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let I n = ∫ 0 1 e x ( x − 1 ) n d x
Applying By Parts
I n = ( x − 1 ) n e x ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 n ( x − 1 ) n − 1 e x d x
⇒ I n = − ( − 1 ) n − n I n − 1 ⇒ I n = − n I n − 1 − ( − 1 ) n
Recursively putting I n − 1 in terms of I n − 2 and I n − 2 in terms of I n − 3 we get ,
I n = − n [ − ( n − 1 ) I n − 2 − ( − 1 ) n − 1 ] − ( − 1 ) n = n ( n − 1 ) I n − 2 + n ( − 1 ) n − 1 − ( − 1 ) n = n ( n − 1 ) [ − ( n − 2 ) I n − 3 − ( − 1 ) n − 2 ] + n ( − 1 ) n − 1 − ( − 1 ) n = − n ( n − 1 ) ( n − 2 ) I n − 3 − n ( n − 1 ) ( − 1 ) n − 2 + n ( − 1 ) n − 1 − ( − 1 ) n
By repeatedly putting of every I j in terms of I j − 1 after k t h steps for some integer k we will get ,
I n = ( − 1 ) k ( n − k ) ! n ! I n − k + l = 1 ∑ k ( − 1 ) l ( n − l + 1 ) ! n ! ( − 1 ) n − l + 1 = ( − 1 ) k ( n − k ) ! n ! I n − k + ( − 1 ) n + 1 l = 1 ∑ k ( n − l + 1 ) ! n !
Putting k = n
I n = ( − 1 ) n n ! I 0 + ( − 1 ) n + 1 l = 1 ∑ n ( n − l + 1 ) ! n !
I 0 = ∫ 0 1 e x ( x − 1 ) 0 d x = e x ∣ ∣ ∣ ∣ 0 1 = e − 1 I n = ( − 1 ) n n ! ( e − 1 ) + ( − 1 ) n + 1 l = 1 ∑ n ( n − l + 1 ) ! n ! = ( − 1 ) n + 1 ( n ! + l = 1 ∑ n ( n − l + 1 ) ! n ! ) + ( − 1 ) n n ! e Since n is finite, first term of I n must be rational number and hence does not contains e as a factor. So the only term containing e is the second term i . e . ( − 1 ) n n ! e Comapring I n with the given integral i . e . 1 6 − 6 e we get − 6 = ( − 1 ) n n ! On solving, we get n = 3 Checking this value for the first term of I n we will get 1 6 Hence the answer is n = 3