Recurrence Integration

Calculus Level 3

Find the smallest integer n n such that

0 1 e x ( x 1 ) n d x = 16 6 e \large \int_0^1 {e^x}(x-1)^n\, dx = 16 - 6e


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let I n = 0 1 e x ( x 1 ) n d x \Large \text{ Let } I_n = \int_0^1 e^x(x-1)^ndx

Applying By Parts \Large \text{ Applying By Parts }

I n = ( x 1 ) n e x 0 1 0 1 n ( x 1 ) n 1 e x d x \Large I_n = \Big(x-1\Big)^ne^x\bigg|_0^1 -\int_0^1n\Big(x-1\Big)^{n-1}e^xdx

I n = ( 1 ) n n I n 1 I n = n I n 1 ( 1 ) n \Large \Rightarrow I_n = -(-1)^n - nI_{n-1} \\ \Large\Rightarrow I_n = -nI_{n-1} - (-1)^n

Recursively putting I n 1 in terms of I n 2 and I n 2 in terms of I n 3 we get , \Large \text{ Recursively putting } I_{n-1} \text{ in terms of } I_{n-2} \text{ and } I_{n-2} \text{ in terms of } I_{n-3} \text{ we get } ,

I n = n [ ( n 1 ) I n 2 ( 1 ) n 1 ] ( 1 ) n = n ( n 1 ) I n 2 + n ( 1 ) n 1 ( 1 ) n = n ( n 1 ) [ ( n 2 ) I n 3 ( 1 ) n 2 ] + n ( 1 ) n 1 ( 1 ) n = n ( n 1 ) ( n 2 ) I n 3 n ( n 1 ) ( 1 ) n 2 + n ( 1 ) n 1 ( 1 ) n \Large I_n = -n\bigg[-(n-1)I_{n-2} - (-1)^{n-1}\bigg] -(-1)^n \\ \Large \hspace{1cm} = n(n-1)I_{n-2} + n(-1)^{n-1} - (-1)^n \\ \Large \hspace{1cm} = n(n-1)\bigg[-(n-2)I_{n-3} - (-1)^{n-2}\bigg] + n(-1)^{n-1} - (-1)^n \\ \Large \hspace{1cm} = -n(n-1)(n-2)I_{n-3} - n(n-1)(-1)^{n-2} + n(-1)^{n-1} - (-1)^n

By repeatedly putting of every I j in terms of I j 1 after k t h steps for some integer k we will get , \Large \text{ By repeatedly putting of every } I_j \text{ in terms of } I_{j-1} \text{ after } k_{th} \text{ steps for some integer }k \text{ we will get },

I n = ( 1 ) k n ! ( n k ) ! I n k + l = 1 k ( 1 ) l n ! ( n l + 1 ) ! ( 1 ) n l + 1 = ( 1 ) k n ! ( n k ) ! I n k + ( 1 ) n + 1 l = 1 k n ! ( n l + 1 ) ! \Large I_n = (-1)^k\frac{n!}{(n-k)!}I_{n-k} + \sum\limits_{l=1}^{k} (-1)^l\frac{n!}{(n-l+1)!}(-1)^{n-l+1} \\ \Large \hspace{1cm} = (-1)^k\frac{n!}{(n-k)!}I_{n-k} + (-1)^{n+1}\sum\limits_{l=1}^{k}\frac{n!}{(n-l+1)!} \\

Putting k = n \Large\text{Putting } k = n

I n = ( 1 ) n n ! I 0 + ( 1 ) n + 1 l = 1 n n ! ( n l + 1 ) ! \Large I_n = (-1)^{n}n!I_0 + (-1)^{n+1}\sum\limits_{l=1}^{n} \frac{n!}{(n-l+1)!} \\

I 0 = 0 1 e x ( x 1 ) 0 d x = e x 0 1 = e 1 I n = ( 1 ) n n ! ( e 1 ) + ( 1 ) n + 1 l = 1 n n ! ( n l + 1 ) ! = ( 1 ) n + 1 ( n ! + l = 1 n n ! ( n l + 1 ) ! ) + ( 1 ) n n ! e Since n is finite, first term of I n must be rational number and hence does not contains e as a factor. So the only term containing e is the second term i . e . ( 1 ) n n ! e Comapring I n with the given integral i . e . 16 6 e we get 6 = ( 1 ) n n ! On solving, we get n = 3 Checking this value for the first term of I n we will get 16 Hence the answer is n = 3 \Large I_0 = \int_0^1 e^x(x-1)^0dx = e^x\bigg|_0^1 = e-1 \\ \Large I_n = (-1)^{n}n!(e - 1) + (-1)^{n+1}\sum\limits_{l=1}^{n} \frac{n!}{(n-l+1)!} \\ \hspace{1cm} \Large = (-1)^{n+1}\bigg(n! + \sum\limits_{l=1}^{n} \frac{n!}{(n-l+1)!}\bigg) + (-1)^nn!e \\ \\ \Large\text{Since } n \text{ is finite, first term of } I_n \text{ must be rational number and hence does not contains } e \text{ as a factor. So the only term containing } e \text{ is the second term } i.e. (-1)^nn!e \\ \Large\text{ Comapring } I_n \text{ with the given integral } i.e. 16 - 6e \text{ we get } \\ \Large -6 = (-1)^nn! \\ \Large\text{ On solving, we get } \\ \Large \quad n = 3 \\ \Large\text{ Checking this value for the first term of } I_n \text{ we will get } 16 \\ \Large \text{ Hence the answer is } n = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...