Recurring Ratios

Algebra Level 3

My friend Jim gave me an infinite list of ratios, and here are the first few in the list:

  • a a : k k
  • r 0 r_0 : a a + k 9 \frac{k}{9}
  • r 1 r_1 : r 0 r_0 + k 9 \frac{k}{9}
  • r 2 r_2 : r 1 r_1 + k 9 , \frac{k}{9}, and so on.

He told me that k k is a single-digit positive integer, that a < k 1 , a < k - 1, that every ratio in the list is equal , and that the r n r_n tends towards 0.148148148...

Without using a calculator, what is k ? k?

3 4 7 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
Mar 3, 2018

Since all the ratios are equal, we can find a value for each of the ratios in terms of a and k: r 0 a + k 9 = a k r 0 = a 2 k + a 9 r 0 = a 2 k + a 9 ( 1 ) r 1 r 0 + k 9 = r 1 a 2 k + a 9 + k 9 = a k r 1 = a 3 k 2 + a 2 9 k + a 9 r 1 = a 3 k 2 + a 9 ( 1 + a k ) r 2 r 1 + k 9 = r 2 a 3 k 2 + a 2 9 k + a 9 + k 9 = a k r 2 = × a 4 k 3 + a 3 9 k 2 + a 2 9 k + a 9 r 2 = a 4 k 3 + a 9 ( 1 + a k + a 2 k 2 ) \begin{aligned}\frac{r_0}{a+\frac{k}{9}}&=\frac{a}{k}&\implies&&r_0&=\frac{a^2}{k}+\frac{a}{9}&\implies&r_0=\frac{a^2}{k}+\frac{a}{9}\left(1\right)\\ \frac{r_1}{r_0+\frac{k}{9}}=\frac{r_1}{\frac{a^2}{k}+\frac{a}{9}+\frac{k}{9}}&=\frac{a}{k}&\implies&&r_1&=\frac{a^3}{k^2}+\frac{a^2}{9k}+\frac{a}{9}&\implies&r_1=\frac{a^3}{k^2}+\frac{a}{9}\left(1+\frac{a}{k}\right)\\ \frac{r_2}{r_1+\frac{k}{9}}=\frac{r_2}{\frac{a^3}{k^2}+\frac{a^2}{9k}+\frac{a}{9}+\frac{k}{9}}&=\frac{a}{k}&\implies&&r_2&=\times\frac{a^4}{k^3}+\frac{a^3}{9k^2}+\frac{a^2}{9k}+\frac{a}{9}&\implies&r_2=\frac{a^4}{k^3}+\frac{a}{9}\left(1+\frac{a}{k}+\frac{a^2}{k^2}\right)\end{aligned} Now we can see a pattern appearing, and write a general rule: r n = a n + 2 k n + 1 + a 9 ( 1 + a k + a 2 k 2 + + a n k n ) r_n=\frac{a^{n+2}}{k^{n+1}}+\frac{a}{9}\left(1+\frac{a}{k}+\frac{a^2}{k^2}+\dots+\frac{a^n}{k^n}\right) We know that as n approaches infinity, r approaches 0.148148148..., which can be written as 148 999 \frac{148}{999} or 4 27 \frac{4}{27} . Now we know that when n approaches infinity, the above formula approaches this value: lim n a n + 2 k n + 1 + a 9 ( 1 + a k + a 2 k 2 + + a n k n ) = 4 27 \lim_{n\to\infty}\frac{a^{n+2}}{k^{n+1}}+\frac{a}{9}\left(1+\frac{a}{k}+\frac{a^2}{k^2}+\dots+\frac{a^n}{k^n}\right)=\frac{4}{27} The infinite sum can be solved using the formula for the sum of an infinite geometric series, S = A 1 r S_\infty=\frac{A}{1-r} where A is the first term and r is the common ratio. We know that this converges, as a > k a>k , so 0 < a k < 1 0<\frac{a}{k}<1 lim n a n + 2 k n + 1 + a 9 ( 1 1 a k ) = 4 27 lim n a × ( a k ) n + 1 + ( a k 9 k 9 a ) = 4 27 \lim_{n\to\infty}\frac{a^{n+2}}{k^{n+1}}+\frac{a}{9}\left(\frac{1}{1-\frac{a}{k}}\right)=\frac{4}{27}\\ \lim_{n\to\infty}a\times\left(\frac{a}{k}\right)^{n+1}+\left(\frac{ak}{9k-9a}\right)=\frac{4}{27} Since 0 < a k < 1 , lim n ( a k ) n + 1 = 0 0<\frac{a}{k}<1, \lim_{n\to\infty}\left(\frac{a}{k}\right)^{n+1}=0 , so the other part of the limit disappears, leaving us with a k 9 k 9 a = 4 27 \frac{ak}{9k-9a}=\frac{4}{27} Now we find that k = 4 k=4 and a = 1 a=1 satisfy this equation, so the answer is 4 \boxed4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...