Recurring Styles 13 - Game of Inequalities!

Algebra Level 5

a n + 1 = a n n + n a n , a 1 = 1 \Large{ a_{n+1} = \dfrac{a_n}{n} + \dfrac{n}{a_n} \quad, \quad a_1 = 1}

Let the sequence < a n > \left< a_n \right> be defined as above for all positive integers n n . Evaluate a 2015 \large{\left \lfloor a_{2015} \right \rfloor }


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Sep 20, 2015

easy python3:

Does anyone have a math solution?

Alan Yan - 5 years, 8 months ago
Karan Siwach
Sep 17, 2015
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <stdio.h>


#include <stdlib.h>


float series(int n)


{


if (n==1){return 1;}else


 {


float t= series(n-1);


float f=t/(float)(n-1)+(float)(n-1)/t;


return f;


}


}



int main()


{


float f;


f=series(2015);


printf("%f", f);


return 0;


}

Is there a mathematical method??? @Pi Han Goh @Brian Charlesworth ??

Aaghaz Mahajan - 1 year ago

Log in to reply

I think yes, a n \lfloor a_n \rfloor is closest integer value to n \sqrt n ... maybe?

Pi Han Goh - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...