Recurring Styles #14 - Nested Radicals!

Calculus Level 5

x n + 1 = 2 + x n , x 1 = 2 \large{ x_{n+1} = \sqrt{2+x_n} \quad, \quad x_1 = \sqrt{2} }

Consider the sequence ( x n ) n Z + (x_n)_{n \in \mathbb Z^+} as defined above. Let L = lim n 4 n ( 2 x n ) L = \displaystyle \lim_{n \to \infty} 4^n(2-x_n) . If L L can be expressed in the form A B π C \dfrac{A}{B} \pi^C for positive integers A , B , C A,B,C , find the minimum value of A + B + C A+B+C .

Bonus: Generalize x n x_n in terms of n n .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Sep 11, 2015

By the half-angle formula for the cosine we have x n = 2 cos ( π 2 n + 1 ) x_n=2\cos\left(\frac{\pi}{2^{n+1}}\right) . Now lim n 4 n ( 2 x n ) \lim_{n\to\infty}4^n(2-x_n) = lim n 4 n ( 2 2 cos ( π 2 n + 1 ) ) = lim n 4 n + 1 sin 2 ( π 2 n + 2 ) = lim n 4 n + 1 π 2 4 n + 2 = π 2 4 =\lim_{n\to\infty}4^n\left(2-2\cos\left(\frac{\pi}{2^{n+1}}\right)\right)=\lim_{n\to\infty}4^{n+1}\sin^2\left(\frac{\pi}{2^{n+2}}\right)=\lim_{n\to\infty}4^{n+1}\frac{\pi^2}{4^{n+2}}=\frac{\pi^2}{4}

Moderator note:

Nice observation of the half-angle trig substitution.

sir, did something like this: x_n=\sqrt{2+x_{n-1}}=\sqrt{2+\sqrt{2+x_{n-2}}=\sqrt{2+\sqrt{2+\sqrt{2+...}}}(n-1 times) so, l i m ( n ) ( x n ) = 2 + 2 + 2 + . . . = 2 lim_(n\rightarrow\infty)(x_n)=\sqrt{2+\sqrt{2+\sqrt{2+...}}}=2 and l i m n ( 4 n ( 2 2 ) ) = 0 lim_{n\rightarrow \infty} (4^n(2-2))=0 what is wrong?

Aareyan Manzoor - 5 years, 8 months ago

Log in to reply

1 thing approaches infinity, the other approaches 0. The limit does not necessarily approach 0.

Joe Mansley - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...