Recurring Styles 4 - Limit of an Expression!

Calculus Level 5

lim n x n x n + 2 x n + 1 2 = 4 \large{\lim_{n \to \infty} \dfrac{x_n \cdot x_{n+2}}{x_{n+1}^2} = 4}

Let ( x n ) n = 1 (x_n)_{n=1}^{\infty} be a sequence such that the above limit satisfies, and where x i > 0 x_i > 0 for every i 1 i \geq 1 . Then find the value of lim n x n n 2 \displaystyle {\lim_{n \to \infty} \sqrt[n^2]{x_n} } .


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Jul 22, 2015

Let y n = x n n 2 ln ( y n ) = 1 n 2 ln ( x n ) y_n = \sqrt[n^2]{x_n} \longrightarrow \ln(y_n) = \frac{1}{n^2}\ln(x_n) .

We need to find lim n y n \displaystyle \lim_{n \to \infty} y_n

lim n ln ( y n ) = lim n ln ( x n ) n 2 \Longrightarrow \lim_{n \to \infty} \ln(y_n) = \lim_{n \to \infty} \frac{\ln(x_n)}{n^2}

By Stolz-Cesaro Theorem :

lim n ln ( x n ) n 2 = lim n ln ( x n + 1 ) ln ( x n ) ( n + 1 ) 2 n 2 \lim_{n \to \infty} \frac{\ln(x_n)}{n^2} = \lim_{n \to \infty} \frac{\ln(x_{n+1}) - \ln(x_n)}{(n+1)^2 - n^2}

= lim n ln ( x n + 1 x n ) 2 n + 1 =\lim_{n \to \infty} \frac{\ln(\frac{x_{n+1}}{x_n})}{2n+1}

Again, by Stolz-Cesaro Theorem :

= lim n ln ( x n + 2 x n + 1 ) ln ( x n + 1 x n ) 2 ( n + 1 ) + 1 2 n 1 = lim n ln ( x n x n + 2 x n + 1 2 ) 2 = ln ( 4 ) 2 = ln ( 2 ) = \lim_{n \to \infty} \frac{\ln(\frac{x_{n+2}}{x_{n+1}}) - \ln(\frac{x_{n+1}}{x_n})}{2(n+1)+1 - 2n - 1} = \lim_{n \to \infty} \frac{\ln(\frac{x_n \cdot x_{n+2}}{x_{n+1}^2})}{2} = \frac{\ln(4)}{2} = \ln(2)

lim n ln ( y n ) = ln ( 2 ) lim n y n = 2 \Rightarrow \lim_{n \to \infty} \ln(y_n) = \ln(2) \Rightarrow \lim_{n \to \infty} y_n = \boxed{2}

this is B-E-A-U-T-I-F-U-L!!!!(+1)

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...