Let be a sequence such that , and for all , the above recurrence relation satisfies.
For which all values of is every an integer?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let y n = n x n − 1 . Then y 2 = 1 , y 3 = 2 and for n ≥ 3 ,
( n − 2 ) y n + 1 = ( n 2 − n − 1 ) y n − ( n − 1 ) 2 y n − 1
thus, ( n − 2 ) ( y n + 1 − y n ) = ( n − 1 ) 2 ( y n − y n − 1 )
Let z n = y n − y n − 1 . Then z 3 = 1 and z n + 1 = n − 2 ( n − 1 ) 2 z n for n ≥ 3 .
It follows easily that z n = ( n − 2 ) ⋅ ( n − 2 ) ! for all n ≥ 3 . Then:
y n = ( y n − y n − 1 ) + ( y n − 1 − y n − 2 ) + ( y n − 2 − y n − 3 ) + … + ( y 3 − y 2 ) + y 2
= z n + z n − 1 + z n − 2 + … + z 3 + y 2 = 1 + k = 1 ∑ n − 2 k ⋅ k ! = ( n − 1 ) !
And the last equality can be obtained by Induction or telescoping series, etc.
Therefore for n ≥ 2 , we have x n = n ( n − 1 ) ! + 1 .
Thus, x n is an integer if and only if n divides ( n − 1 ) ! + 1 , which is equivalent to n being prime, according to Wilson's Theorem .