Recursion in 2018

Let { a n } n = 0 \{a_n\}_{n = 0}^{\infty} be a sequence of real numbers such that a 0 = 0 , a 1 = 1 , a_0 = 0, a_1 = 1, and a n = c a n 1 + a n 2 a_n = ca_{n - 1} + a_{n - 2} for n 2 , n \geq 2, where c c is a real number. Given that a 2018 a 2015 = a 2017 a 2016 + 2018 , a_{2018}a_{2015} = a_{2017}a_{2016} + 2018, find the sum of all possible values of c , c, to three decimal places.


The answer is 2018.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Jan 28, 2018

We will prove the following proposition first:

Proposition : Given a sequence of real numbers { a n } \{a_n\} that obeys the recursive formula a n = c 1 a n 1 + c 2 a n 2 a_n = c_1a_{n - 1} + c_2a_{n - 2} with initial conditions a 0 = 0 , a 1 = 1 , a_0 = 0, a_1 = 1, we have

a w a x a y a z = ( c 2 ) r ( a w r a x r a y r a z r ) , a_w a_x - a_y a_z = (-c_2)^r(a_{w - r} a_{x - r} - a_{y - r} a_{z - r}),

where w , x , y , z , r w, x, y, z, r are positive integers such that w + x = y + z . w + x = y + z.

Proof : Consider the matrix

M = ( c 1 c 2 1 0 ) . M = \begin{pmatrix} c_1 & c_2 \\ 1 & 0 \end{pmatrix}.

It can be shown through induction that

M k = ( a k + 1 c 2 a k a k c 2 a k 1 ) , M^k = \begin{pmatrix} a_{k + 1} & c_2a_k \\ a_k & c_2a_{k - 1} \end{pmatrix},

for all positive integers k . k. Since w + x = y + z , w + x = y + z, we can write M w M x = M y M z , M^wM^x = M^yM^z, which can be expanded into

( a w + 1 c 2 a w a w c 2 a w 1 ) ( a x + 1 c 2 a x a x c 2 a x 1 ) = ( a y + 1 c 2 a y a y c 2 a y 1 ) ( a z + 1 c 2 a z a z c 2 a z 1 ) ( a w + 1 a x + 1 + c 2 a w a x ) = ( a y + 1 a z + 1 + c 2 a y a z ) a w + 1 a x + 1 + c 2 a w a x = a y + 1 a z + 1 + c 2 a y a z a w + 1 a x + 1 a y + 1 a z + 1 = c 2 ( a w a x a y a z ) . \begin{aligned} \begin{pmatrix} a_{w + 1} & c_2a_w \\ a_w & c_2a_{w - 1} \end{pmatrix} \begin{pmatrix} a_{x + 1} & c_2a_x \\ a_x & c_2a_{x - 1} \end{pmatrix} &= \begin{pmatrix} a_{y + 1} & c_2a_y \\ a_y & c_2a_{y - 1} \end{pmatrix} \begin{pmatrix} a_{z + 1} & c_2a_z \\ a_z & c_2a_{z - 1} \end{pmatrix} \\ \begin{pmatrix} a_{w + 1} a_{x + 1} + c_2a_wa_x & \cdots \\ \cdots & \cdots \end{pmatrix} &= \begin{pmatrix} a_{y + 1}a_{z + 1} + c_2a_ya_z & \cdots \\ \cdots & \cdots \end{pmatrix} \\ a_{w + 1} a_{x + 1} + c_2a_wa_x &= a_{y + 1}a_{z + 1} + c_2a_ya_z \\ a_{w + 1} a_{x + 1} - a_{y + 1}a_{z + 1} &= -c_2(a_wa_x - a_ya_z). \end{aligned}

Iterating this formula r r times and decreasing the initial indices by one yields a w a x a y a z = ( c 2 ) r ( a w r a x r a y r a z r ) . a_w a_x - a_y a_z = (-c_2)^r(a_{w - r} a_{x - r} - a_{y - r} a_{z - r}). \, \blacksquare

We can apply this result directly to solve the problem. From the problem statement, we have c 2 = 1 c_2 = 1 and a 2018 a 2015 a 2017 a 2016 = 2018. a_{2018}a_{2015} - a_{2017}a_{2016} = 2018. Since, 2018 + 2015 = 2017 + 2016,

a 2018 a 2015 a 2017 a 2016 = ( 1 ) 2015 ( a 3 a 0 a 2 a 1 ) = ( a 3 ( 0 ) a 2 ( 1 ) ) = a 2 , a_{2018}a_{2015} - a_{2017}a_{2016} = (-1)^{2015}(a_3a_0 - a_2a_1) = -(a_3(0) - a_2(1)) = a_2,

and a 2 = 2018. a_2 = 2018. However, we also have a 2 = c a 1 + a 0 = c ( 1 ) + 0 = c , a_2 = ca_1 + a_0 = c(1) + 0 = c, giving us c = 2018 c = \boxed{2018} as the only possible value of c c that will satisfy the condition.

(Apologies for anyone who was trying the earlier versions of this problem before I deleted them. That's what I get for staying up until 3 in the morning writing math problems.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...