Recursion in limits

Calculus Level 4

If a 1 = 1 a_1=1 and a n = n ( 1 + a n 1 ) a_n=n(1+a_{n-1}) for all n 2 n \geq 2 , then evaluate the following limit.

lim n [ ( 1 + 1 a 1 ) ( 1 + 1 a 2 ) ( 1 + 1 a 3 ) ( 1 + 1 a n ) ] \lim_{n \to \infty} \left[ \left(1+\frac{1}{a_1} \right) \left( 1+ \frac{1}{a_2} \right) \left( 1+ \frac{1}{a_3} \right) \cdots \left(1+\frac{1}{a_n} \right) \right]

e 2 e^2 2 π 2 \frac{\pi}{2} 0 e e 1 π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 11, 2019

Let p n = k = 1 n ( 1 + 1 a k ) p_n = \displaystyle \prod_{k=1}^n \left(1+\frac 1{a_k}\right) . Then

p n = ( 1 + 1 a 1 ) ( 1 + 1 a 2 ) ( 1 + 1 a 3 ) ( 1 + 1 a n ) = a 1 + 1 a 1 × a 2 + 1 a 2 × a 3 + 1 a 3 × × a n + 1 a n = a 1 + 1 a 1 × a 2 + 1 2 ( a 1 + 1 ) × a 3 + 1 3 ( a 2 + 1 ) × × a n + 1 n ( a n 1 + 1 ) = a n + 1 n ! a 1 = a n + 1 n ! = n ( a n 1 + 1 ) + 1 n ! = a n 1 + 1 ( n 1 ) ! + 1 n ! = p n 1 + 1 n ! = 1 + 1 1 + 1 2 ! + 1 3 ! + + 1 n ! \begin{aligned} p_n & = \left(1+\frac 1{a_1} \right) \left(1+\frac 1{a_2} \right) \left(1+\frac 1{a_3} \right) \cdots \left(1+\frac 1{a_n} \right) \\ & = \frac {a_1+1}{a_1} \times \frac {a_2+1}{a_2} \times \frac {a_3+1}{a_3} \times \cdots \times \frac {a_n+1}{a_n} \\ & = \frac {\cancel{a_1+1}}{a_1} \times \frac {\cancel{a_2+1}}{2\cancel{(a_1+1)}} \times \frac {\cancel{a_3+1}}{3\cancel{(a_2+1)}} \times \cdots \times \frac {a_n+1}{n\cancel{(a_{n-1}+1)}} \\ & = \frac {a_n + 1}{n!a_1} = \frac {a_n+1}{n!} = \frac {n(a_{n-1}+1)+1}{n!} \\ & = \frac {a_{n-1}+1}{(n-1)!} + \frac 1{n!} = p_{n-1} + \frac 1{n!} \\ & = 1 + \frac 11 + \frac 1{2!} + \frac 1{3!} + \cdots + \frac 1{n!} \end{aligned}

Therefore, lim n p n = e \displaystyle \lim_{n \to \infty} p_n = \boxed e .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...