Recursions in Real Analysis.

Calculus Level 4

Let f : R R f : \mathbb{R \rightarrow R} be a continuous function which satisfies the identity f ( 2 x ) = 3 f ( x ) x R f(2x) = 3f(x)\ \forall x \in \mathbb R .

If 0 1 f ( x ) d x = 1 \displaystyle \int _{ 0 }^{ 1 } f(x) \ dx = 1 , evaluate 1 2 1 2 f ( x ) d x \displaystyle \frac { 1 }{ 2 } \int _{ 1 }^{ 2 } f( x) \ dx .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

0 1 f ( x ) d x = 1 Given 0 1 3 f ( x ) d x = 3 also that f ( 2 x ) = 3 f ( x ) 0 1 f ( 2 x ) d x = 3 Let u = 2 x d u = 2 d x 1 2 0 2 f ( u ) d u = 3 1 2 1 2 f ( u ) d u + 1 2 0 1 f ( u ) d u = 3 Replace u with x 1 2 1 2 f ( x ) d x + 1 2 0 1 f ( x ) d x = 3 1 2 1 2 f ( x ) d x + 1 2 = 3 1 2 1 2 f ( x ) d x = 3 1 2 = 2.5 \begin{aligned} \int_0^1 f(x) \ dx & = 1 & \small \color{#3D99F6} \text{Given} \\ \int_0^1 {\color{#3D99F6}3f(x)} \ dx & = 3 & \small \color{#3D99F6} \text{also that }f(2x) = 3f(x) \\ \int_0^1 {\color{#3D99F6}f(2x)} \ dx & = 3 & \small \color{#3D99F6} \text{Let } u = 2x \implies du = 2\ dx \\ \frac 12 \int_0^2 f(u) \ du & = 3 \\ \frac 12 \int_1^2 f(u) \ du + \frac 12 \int_0^1 f(u) \ du & = 3 & \small \color{#3D99F6} \text{Replace } u \text{ with }x \\ \frac 12 \int_1^2 f(x) \ dx + \color{#3D99F6} \frac 12 \int_0^1 f(x) \ dx & = 3 \\ \frac 12 \int_1^2 f(x) \ dx + \color{#3D99F6} \frac 12 & = 3 \\ \implies \frac 12 \int_1^2 f(x) \ dx & = 3 - \frac 12 = \boxed {2.5} \end{aligned}

As a supplement (in order to know the solution is self-consistent) we can note that f ( x ) = log 2 6 x log 2 3 f(x) = \log_26 \cdot |x|^{\log_23} is one such function. Therefore the solution makes sense (are there any other such functions?)

Brian Moehring - 2 years, 7 months ago

Log in to reply

Thanks, good suggestion.

Chew-Seong Cheong - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...