Recursive products of cosine function

Geometry Level 3

Let a = π 31 a = \dfrac \pi{31} . Calculate the value of

32 cos ( a ) cos ( 2 a ) cos ( 4 a ) cos ( 8 a ) cos ( 16 a ) 32 \cos(a)\cos(2a)\cos(4a)\cos(8a)\cos(16a)


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Srinivasa Gopal
Feb 8, 2020

The key idea is to multiply and divide the expression cos(a) * cos(2a) * cos(4a) * cos(8a) * cos(16a) by sin(a). Then, a cascaded use of the trigometric identity sin(2x) = 2 sin(x) cos(x) makes the product equal sin(32 a) / (32 sin(a)). But for the given value of a, 32a = pi + a, so sin(32 a) / sin(a) = -1 and so 32 * cos(a) * cos(2a) * cos(4a) * cos(8a) * cos(16a) = -1

This was also easy....

Nikola Alfredi - 1 year, 3 months ago

P = 32 cos π 31 cos 2 π 31 cos 4 π 31 cos 8 π 31 cos 16 π 31 = 32 × sin π 31 cos π 31 cos 2 π 31 cos 4 π 31 cos 8 π 31 cos 16 π 31 sin π 31 = 32 × sin 2 π 31 cos 2 π 31 cos 4 π 31 cos 8 π 31 cos 16 π 31 2 sin π 31 = 32 × sin 4 π 31 cos 4 π 31 cos 8 π 31 cos 16 π 31 4 sin π 31 = 32 × sin 8 π 31 cos 8 π 31 cos 16 π 31 8 sin π 31 = 32 × sin 16 π 31 cos 16 π 31 16 sin π 31 = 32 × sin 32 π 31 32 sin π 31 = sin 32 π 31 sin π 31 = sin π 31 sin π 31 = 1 \begin{aligned} P & = 32 \cos \frac \pi{31} \cos \frac {2\pi}{31} \cos \frac {4\pi}{31} \cos \frac {8\pi}{31} \cos \frac {16\pi}{31} \\ & = 32 \times \frac {\blue{\sin \frac \pi{31}}\cos \frac \pi{31} \cos \frac {2\pi}{31} \cos \frac {4\pi}{31} \cos \frac {8\pi}{31} \cos \frac {16\pi}{31}}{\blue{\sin \frac \pi{31}}} \\ & = 32 \times \frac {\sin \frac {2\pi}{31}\cos \frac {2\pi}{31} \cos \frac {4\pi}{31} \cos \frac {8\pi}{31} \cos \frac {16\pi}{31}}{2\sin \frac \pi{31}} \\ & = 32 \times \frac {\sin \frac {4\pi}{31}\cos \frac {4\pi}{31} \cos \frac {8\pi}{31} \cos \frac {16\pi}{31}}{4\sin \frac \pi{31}} \\ & = 32 \times \frac {\sin \frac {8\pi}{31}\cos \frac {8\pi}{31} \cos \frac {16\pi}{31}}{8\sin \frac \pi{31}} \\ & = 32 \times \frac {\sin \frac {16\pi}{31}\cos \frac {16\pi}{31}}{16\sin \frac \pi{31}} \\ & = 32 \times \frac {\sin \frac {32\pi}{31}}{32\sin \frac \pi{31}} \\ & = \frac {\blue{\sin \frac {32\pi}{31}}}{\sin \frac \pi{31}} = \frac {\blue{-\sin \frac \pi{31}}}{\sin \frac \pi{31}} = \boxed{-1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...