Let a = 3 1 π . Calculate the value of
3 2 cos ( a ) cos ( 2 a ) cos ( 4 a ) cos ( 8 a ) cos ( 1 6 a )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This was also easy....
P = 3 2 cos 3 1 π cos 3 1 2 π cos 3 1 4 π cos 3 1 8 π cos 3 1 1 6 π = 3 2 × sin 3 1 π sin 3 1 π cos 3 1 π cos 3 1 2 π cos 3 1 4 π cos 3 1 8 π cos 3 1 1 6 π = 3 2 × 2 sin 3 1 π sin 3 1 2 π cos 3 1 2 π cos 3 1 4 π cos 3 1 8 π cos 3 1 1 6 π = 3 2 × 4 sin 3 1 π sin 3 1 4 π cos 3 1 4 π cos 3 1 8 π cos 3 1 1 6 π = 3 2 × 8 sin 3 1 π sin 3 1 8 π cos 3 1 8 π cos 3 1 1 6 π = 3 2 × 1 6 sin 3 1 π sin 3 1 1 6 π cos 3 1 1 6 π = 3 2 × 3 2 sin 3 1 π sin 3 1 3 2 π = sin 3 1 π sin 3 1 3 2 π = sin 3 1 π − sin 3 1 π = − 1
Problem Loading...
Note Loading...
Set Loading...
The key idea is to multiply and divide the expression cos(a) * cos(2a) * cos(4a) * cos(8a) * cos(16a) by sin(a). Then, a cascaded use of the trigometric identity sin(2x) = 2 sin(x) cos(x) makes the product equal sin(32 a) / (32 sin(a)). But for the given value of a, 32a = pi + a, so sin(32 a) / sin(a) = -1 and so 32 * cos(a) * cos(2a) * cos(4a) * cos(8a) * cos(16a) = -1