Recursive radiacls

Algebra Level 3

Find the value of 4 + 16 + 64 + \sqrt{4+\sqrt{16+\sqrt{64+\sqrt{\cdots}}}}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dwaipayan Shikari
Dec 12, 2020

3 = 4 + 5 = 4 + 16 + 9 = 4 + 16 + 81 = 4 + 16 + 64 + 17 3=\sqrt{4+5} = \sqrt{4+\sqrt{16+9}}= \sqrt{4+\sqrt{16+\sqrt{81}}} =\sqrt{4+\sqrt{16+\sqrt{64+17}}} So , 3 = 4 + 16 + 64 + 256 + 33 3= \sqrt{4+\sqrt{16+\sqrt{64+\sqrt{256+33\cdots}}}}

Convergence needs to be proved...

Mark Hennings - 6 months ago
Mark Hennings
Dec 13, 2020

This is one of the Ramanujan-style infinite radicals. Consider the sequence of functions g m : [ 0 , ) [ 0 , ) g_m\,:\, [0,\infty) \to [0,\infty) defined inductively as follows: g 0 ( c ) = c g m ( c ) = c 2 + g m 1 ( 2 c ) c 0 , m N g_0(c) \; = \; c \hspace{2cm} g_m(c) \; = \; \sqrt{c^2 + g_{m-1}(2c)} \;\hspace{2.5cm} c \ge 0\,,\,m \in \mathbb{N} It is clear that g m ( c ) c g_m(c) \ge c for all c 0 c \ge 0 and m 0 m \ge 0 . Certainly g o ( c ) c g_o(c) \le c for all c 0 c \ge 0 . If g m 1 ( c ) c + 1 g_{m-1}(c) \le c+1 for all c 0 c \ge 0 , it follows that g m ( c ) 2 c 2 + ( 2 c + 1 ) = ( c + 1 ) 2 g_m(c)^2 \le c^2 + (2c+1) = (c+1)^2 , so that g m ( c ) c + 1 g_m(c) \le c+1 for all c 0 c \ge 0 . Thus we deduce by induction that c g m ( c ) c + 1 c 0 , m 0 c \;\le\; g_m(c) \;\le \; c+1 \hspace{2cm} c \ge 0\,,\, m \ge 0 Since 0 c + 1 g m ( c ) = ( c + 1 ) 2 g m ( c ) 2 c + 1 + g m ( c ) ( c + 1 ) 2 c 2 g m 1 ( 2 c ) c + 1 + g m ( c ) 2 c + 1 g m 1 ( 2 c ) 2 c + 1 0 \le c+1 - g_m(c) \; = \; \frac{(c+1)^2 - g_m(c)^2}{c+1+g_m(c)} \; \le \; \frac{(c+1)^2 - c^2 - g_{m-1}(2c)}{c + 1 + g_m(c)} \; \le \; \frac{2c+1 - g_{m-1}(2c)}{2c+1} for all c 0 c \ge 0 and m 1 m \ge 1 , we deduce by induction that 0 c + 1 g m ( c ) 2 k c + 1 g m k ( 2 k c ) ( 2 c + 1 ) ( 4 c + 1 ) . . . ( 2 k c + 1 ) c 0 , 1 k m 0 \le c+1 - g_m(c) \; \le \; \frac{2^kc + 1 - g_{m-k}(2^kc)}{(2c+1)(4c+1) ... (2^kc+1)} \hspace{2cm} c \ge 0\,,\, 1 \le k \le m so that 0 c + 1 g m ( c ) 2 m c + 1 g 0 ( 2 m c ) ( 2 c + 1 ) ( 4 c + 1 ) . . . ( 2 m c + 1 ) 1 2 m c + 1 c 0 , m 0 0 \le c+1 - g_m(c) \; \le \; \frac{2^mc + 1 - g_0(2^mc)}{(2c+1)(4c+1) ... (2^mc+1)} \; \le \; \frac{1}{2^mc + 1} \hspace{2cm} c \ge 0\,,\, m \ge 0 and hence lim m g m ( c ) = c + 1 c > 0 \lim_{m \to \infty} g_m(c) \; = \; c + 1 \hspace{2cm} c > 0 In this case we have c = 2 c=2 , and hence the infinite radical equals 3 \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...