Recursive Sequence Sum II

Algebra Level 4

Let a n a_n be a recursive function satisfying a n = a n 1 1 n ( n 1 ) a_n=a_{n-1}-\dfrac{1}{n(n-1)} for all positive integers n 2 n\geq 2 , and a 1 = 1 a_1=1 . What is the value of n = 1 1000 a n \displaystyle \sum_{n=1} ^{1000} a_n ? Round your answer to 5 decimal places.


Try Part I .


The answer is 7.48547.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaron Tsai
Aug 25, 2016

Relevant wiki: Harmonic Progression

We start by evaluating a n a_n for n = 2 , 3 , 4 n=2,3,4 .

a 2 = a 1 1 2 ( 2 1 ) = 1 1 2 = 1 2 a_2=\textcolor{#3D99F6}{a_1}-\dfrac{1}{2(2-1)}=\textcolor{#3D99F6}{1}-\dfrac{1}{2}=\dfrac{1}{2}

a 3 = a 2 1 3 ( 3 1 ) = 1 2 1 6 = 1 3 a_3=\textcolor{#3D99F6}{a_2}-\dfrac{1}{3(3-1)}=\textcolor{#3D99F6}{\dfrac{1}{2}}-\dfrac{1}{6}=\dfrac{1}{3}

a 4 = a 3 1 4 ( 4 1 ) = 1 3 1 12 = 1 4 a_4=\textcolor{#3D99F6}{a_3}-\dfrac{1}{4(4-1)}=\textcolor{#3D99F6}{\dfrac{1}{3}}-\dfrac{1}{12}=\dfrac{1}{4}

We note that a n 1 \textcolor{#3D99F6}{a_{n-1}} is always 1 n 1 \textcolor{#3D99F6}{\dfrac{1}{n-1}} . So, we can plug that into the function equation to get

a n = 1 n 1 1 n ( n 1 ) = 1 n 1 + ( n 1 ) n n ( n 1 ) = 1 n 1 + ( 1 n 1 n 1 ) = 1 n a_n=\textcolor{#3D99F6}{\dfrac{1}{n-1}}-\dfrac{1}{n(n-1)}=\dfrac{1}{n-1}+\dfrac{(n-1)-n}{n(n-1)}=\dfrac{1}{n-1}+ \left ( \dfrac{1}{n} - \dfrac{1}{n-1} \right )= \dfrac{1}{n}

So, a n = 1 n a_n=\dfrac{1}{n} ; we are asked to find n = 1 1000 1 n \displaystyle \sum_{n=1} ^{1000} \dfrac{1}{n} , or the sum to 1000 1000 terms of the harmonic progression .

Using this approximation (where γ \gamma is the Euler-Mascheroni constant ) we find that

n = 1 1000 1 n ln 1000 + γ + 1 2 ( 1000 ) 1 12 ( 1000 ) 2 + 7.48547 \displaystyle \sum_{n=1} ^{1000} \dfrac{1}{n} \approx \ln{1000} + \gamma +\dfrac{1}{2(1000)} - \dfrac{1}{12(1000)^2} + \cdot \cdot \cdot \approx \boxed{7.48547}

According to Jaume Oliver Lafont and also Wolfram Mathworld , a similar approximation that converges more quickly is: k = 1 n 1 k ln ( n + 1 2 ) + γ + 1 24 ( n 2 ) 1 24 ( n ) 3 + . . . k = 1 1000 1 k ln ( 1000 + 1 2 ) + γ + 1 24 ( 100 0 2 ) 1 24 ( 1000 ) 3 + . . . 7.48547 \begin{aligned} \displaystyle \sum_{k=1} ^{n} \dfrac{1}{k} & \approx \ln{(n+\frac12)} + \gamma +\dfrac{1}{24(n^2)} - \dfrac{1}{24(n)^3}+...\\ \therefore \displaystyle \sum_{k=1} ^{1000} \dfrac{1}{k} & \approx \ln{(1000+\frac12)} + \gamma +\dfrac{1}{24(1000^2)} - \dfrac{1}{24(1000)^3}+... \approx \boxed{7.48547} \end{aligned} This converges to 5 decimal places correctly with just ln ( 1000.5 ) + γ \ln{(1000.5)}+\gamma

Richard Costen - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...