Recursive substitution

Algebra Level 5

a n + 2 ( 2 n + 1 + 2 n ) a n + 1 + a n = 0 a_{n+2}-(2^{n+1}+2^{-n})a_{n+1}+a_n=0

Consider the recurrence relation above. If a 1 = 1 a_1=1 and a 2 = 3 a_2=3 , and lim n 2 n ( 1 n ) 2 a n = 1 a ( 1 + ϑ b ( c , 1 a ) ) \lim_{n \to \infty} 2^{\frac{n(1-n)}{2}} a_n=\frac{1}{a} \left(1+\vartheta_b \left(c, \frac{1}{a}\right) \right) what is the value of a 2 + b 2 + c 2 a^2+b^2+c^2 ?

Details and Assumptions :

ϑ z ( x , y ) \vartheta_z (x, y) is the Jacobi theta function.

Check out my algebra set .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kazem Sepehrinia
Jun 20, 2015

1) Rewrite the recurrence as: ( a n + 2 2 n + 1 a n + 1 ) 2 n ( a n + 1 2 n a n ) = 0 (a_{n+2}-2^{n+1} a_{n+1})-2^{-n}(a_{n+1}-2^{n} a_{n})=0 2) let b n = a n + 1 2 n a n b_n=a_{n+1}-2^{n} a_{n} , It follows that b 1 = 1 b_1=1 and b n + 1 2 n b n = 0 b_{n+1}-2^{-n} b_{n}=0 It's easy to conclude that b n = 2 n ( n 1 ) 2 b_n=2^{-\frac{n(n-1)}{2}} 3) We have a n + 1 2 n a n = 2 n ( n 1 ) 2 a_{n+1}-2^{n} a_{n}=2^{-\frac{n(n-1)}{2}} till now, another substitution will lead us to solution, let a n = c n 2 n ( n 1 ) 2 a_n= c_n 2^{\frac{n(n-1)}{2}} , we get c 1 = 1 c_1=1 and c n + 1 c n = 2 n 2 c_{n+1}-c_{n}=2^{-n^2} , It is clear that c n = k = 0 n 1 2 k 2 c_n=\sum_{k=0}^{n-1} 2^{-k^2} and finally a n = 2 n ( n 1 ) 2 k = 0 n 1 2 k 2 a_n=2^{\frac{n(n-1)}{2}} \sum_{k=0}^{n-1} 2^{-k^2} 4) What about limit? lim n 2 n ( 1 n ) 2 a n = n = 0 2 n 2 = 1 2 ( 1 + ϑ 3 ( 0 , 1 2 ) ) \lim_{n \to \infty} 2^{\frac{n(1-n)}{2}} a_n=\sum_{n=0}^{\infty} 2^{-n^2} =\frac{1}{2} \left(1+\vartheta_3 \left(0, \frac{1}{2}\right) \right) Regarding this formula: ϑ 3 ( z , q ) = 1 + 2 k = 1 q k 2 cos ( 2 k z ) ; z < 1 \vartheta_{3} (z, q)= 1+2 \sum_{k=1}^{\infty} q^{k^2} \cos (2kz) \ ; |z|<1

Hi I tried to understand the question but could not.....actually I dont know what is a recurrence relation.Can you please explain it....oh yes and what is a Difference Equation ,and does have to do anything with this topic.....please do reply thankx

manish bhargao - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...