Recycle function

Algebra Level pending

g ( a ) = X Y X = remainder when ’a’ is divided by ’a+1’. Y = the quotient when X is divided by a f ( x ) = { 0 ; if x > x 2 1 ; if x < 2 else; f ( g ( x ) ) \large g(a) = |X-Y| \\ \text{X = remainder when 'a' is divided by 'a+1'.} \\ \text{Y = the quotient when X is divided by a} \\ \large f(x) = \begin{cases} 0 \text{; if } x > x^2 \\ 1 \text{; if x < 2} \\ \text{else; } f(g(x)) \end{cases}

The above shows definition of 2 functions

Then find the value of

n = 1 ( f ( 1 1 0 n ) + f ( n ) f ( n ) ) + 1 \large \color{#20A900}{\displaystyle \sum_{n=1}^{\infty} (f(\dfrac{1}{10^n}) + f(n) - f(-n))}+ \color{#3D99F6}{1}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 23, 2016

g ( x ) = X Y . X is the remainder when ’x+1’ divides ’x’. So, since x < x + 1 x = 0 × ( x + 1 ) + x X = x Y is the quotient when ’x’ divides ’X’ X = x x = X × 1 + 0 Y = 1 g(x) = x - 1 ; x > 0 ______________________________________________________________________________________________________ Now for f(x), x > 2 f ( x ) = f ( g ( x ) ) ; x > 2 f ( x ) = f ( x 1 ) ; x > 2 So, value for f(x), x > 2, is the predefined value of integer 1-less than the given value. So at one instance, it will reach the inequality : x < 2 f(x) = -1 ; x > 2 Now, for f(-x), x > 0 x < 2 f(-x) = -1 ; x 0 Now, on evaluating the last case, x > x 2 , this can happen only in case of fractions of type 1 x ; x > 0 f ( 1 1 0 n ) = 0 ; n > 0 , since square of 1 1 0 n ; n > 0 is always lesser than 1 1 0 n ; n > 0 ________________________________________________________________________________________________________ n = 1 ( f ( 1 1 0 n ) + f ( n ) f ( n ) ) + 1 = n = 1 ( 0 + 1 ( 1 ) ) + 1 n = 1 ( 0 ) + 1 = 1 g(x) = X - Y.\\ \text{X is the remainder when 'x+1' divides 'x'. So, since x < x + 1} \\ x = 0 \times (x+1) + x \implies X = x \\ \text{Y is the quotient when 'x' divides 'X' } \\ \color{#3D99F6}{\fbox{X = x}} \\ x = X\times 1 + 0 \\ \implies \color{#3D99F6}{\fbox{Y = 1}} \\ \therefore \color{#D61F06}{\fbox{g(x) = x - 1}}; x > 0 \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \text{Now for f(x), x > 2} \\ f(x) = f(g(x)); x > 2 \\ f(x) = f(x-1); x > 2 \\ \text{So, value for f(x), x > 2, is the predefined value of integer 1-less than the given value.} \\ \text{So at one instance, it will reach the inequality : x < 2} \\ \therefore \color{#D61F06}{\fbox{f(x) = -1}; x > 2} \\ \text{Now, for f(-x), x > 0} \\ -x < 2 \\ \therefore \color{#D61F06}{\fbox{f(-x) = -1}; x \ge 0}\\ \text{Now, on evaluating the last case, } x > x^2 \text{, this can happen only in case of fractions of type } \dfrac{1}{x}; x > 0 \\ \therefore \color{#D61F06}{\boxed{f(\dfrac{1}{10^n}) = 0}; n > 0} \text{, since square of } \dfrac{1}{10^n}; n> 0\text{ is always lesser than } \dfrac{1}{10^n} ; n>0 \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \therefore \displaystyle \sum_{n=1}^{\infty} (f(\dfrac{1}{10^n}) + f(n) - f(-n)) + 1 = \displaystyle \sum_{n=1}^{\infty} (0 + -1 - (-1)) + 1\\ \displaystyle \sum_{n=1}^{\infty} (0) + 1 = \color{#3D99F6}{\boxed{ 1 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...