Reflect point

Geometry Level 1

In the interior of the square A B C D ABCD , a point P P lies in such a way that D C P = C A P = 2 5 \angle DCP = \angle CAP=25^\circ . Find the sum of all possible values of P B A \angle PBA .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jon Haussmann
Nov 30, 2020

It is easy to compute that A P C = 13 5 \angle APC = 135^\circ . Since this is half of reflex angle A B C \angle ABC , which is 27 0 270^\circ , P P lies on the circle centered at B B with radius A B AB . Then P B A = 2 P C A = 4 0 \angle PBA = 2 \angle PCA = 40^\circ .

Let P B A = α \angle {PBA}=α . We can easily see that C A P = C A D P A D = 45 ° 20 ° = 25 ° \angle {CAP}=\angle {CAD}-\angle {PAD}=45\degree-20\degree=25\degree

Similarly, A C P = 20 ° \angle {ACP}=20\degree

So, B A P = 45 ° + 25 ° = 70 ° \angle {BAP}=45\degree+25\degree=70\degree

B C P = 45 ° + 20 ° = 65 ° \angle {BCP}=45\degree+20\degree=65\degree .

Applying sine rule to B A P \triangle {BAP} , we can write

A B B P = sin ( 70 ° + α ) sin 70 ° \dfrac {|\overline {AB}|}{|\overline {BP}|}=\dfrac {\sin (70\degree+α)}{\sin 70\degree}

Applying sine rule to B C P \triangle {BCP} ,

B C B P = sin ( 25 ° + α ) sin 65 ° \dfrac {|\overline {BC}|}{|\overline {BP}|}=\dfrac {\sin (25\degree+α)}{\sin 65\degree}

Since A B = B C , |\overline {AB}|=|\overline {BC}, therefore

sin 65 ° sin ( 70 ° + α ) = sin 70 ° sin ( 25 ° + α ) \sin 65\degree\sin (70\degree+α)=\sin 70\degree\sin (25\degree+α)

tan α = sin 70 ° ( sin 65 ° sin 25 ° ) sin 70 ° cos 25 ° sin 65 ° cos 70 ° \implies \tan α=\dfrac {\sin 70\degree(\sin 65\degree-\sin 25\degree)}{\sin 70\degree\cos 25\degree-\sin 65\degree\cos 70\degree}

α = 40 ° \implies α=\boxed {40\degree} .

Hosam Hajjir
Nov 14, 2020

Let the side length of the square be 1 1 , so that A = ( 0 , 1 ) , B = ( 1 , 1 ) , C = ( 1 , 0 ) , D = ( 0 , 0 ) A = (0, 1), B = (1,1), C= (1, 0), D = (0,0) , and let θ = P B A \theta = \angle PBA , and let r = P B r = \overline{PB}

The coordinates of P P are:

P = ( 1 r cos θ , 1 r sin θ ) P = ( 1 - r \cos \theta, 1 - r \sin \theta)

C P CP makes an angle of 2 5 25^{\circ} with the horizontal, this translates into,

1 r sin θ r cos θ = tan 2 5 \dfrac{1 - r \sin \theta} {- r \cos \theta } = - \tan 25^{\circ}

and

A P AP makes an angle of 7 0 70^{\circ} with the horizontal, this translates into,

r sin θ 1 r cos θ = tan 7 0 \dfrac{ -r \sin \theta } { 1 - r \cos \theta } = - \tan 70^{\circ}

These two equations yield,

r ( sin θ + tan 7 0 cos θ ) = tan 7 0 r ( \sin \theta + \tan 70^{\circ} \cos \theta ) = \tan 70^{\circ}

and,

r ( tan 2 5 cos θ + sin θ ) = 1 r ( \tan 25^{\circ} \cos \theta + \sin \theta) = 1

dividing r r out,

sin θ + tan 7 0 cos θ = tan 7 0 ( tan 2 5 cos θ + sin θ ) \sin \theta + \tan 70^{\circ} \cos \theta = \tan 70^{\circ} ( \tan 25^{\circ} \cos \theta + \sin \theta)

dividing by cos θ \cos \theta ,

tan θ = tan 7 0 ( tan 2 5 1 ) 1 tan 7 0 = 0.839099631177280... \tan \theta = \dfrac{ \tan 70^{\circ} ( \tan 25^{\circ} - 1) }{1 - \tan 70^{\circ}} = 0.839099631177280...

From which θ = 4 0 \theta = \boxed{40^{\circ}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...