Reflected line

Geometry Level 5

A ray of light is sent along the line 2 x 3 y = 5 2x-3y=5 . After reflecting across the line x + y = 1 x+y=1 it enters the opposite side by turning 1 5 o 15^{o} away from the line x + y = 1 x+y=1 , The slope of line along which the reflected ray travels is

m = a b c d m= \frac{ a \sqrt{b} - c } { d }

where a , b , c , d a,b,c,d are co prime natural numbers, and b b is square free.

Find a + b + c + d a + b + c + d .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
May 5, 2015

Actually word 'refraction' should be used instead of 'reflection' to avoid the confusion.

Now the question is very simple,

s l o p e o f 2 x 3 y = 5 i s m = tan θ = 2 3 a s r a y i s t u r n i n g a w a y b y 15 o s o s l o p e o f r e f r a c t e d r a y w i l l b e m = tan ( θ + 15 o ) = 2 3 + ( 2 3 ) 1 2 3 ( 2 3 ) ( a s tan θ = 2 3 & tan 15 o = 2 3 ) = 8 3 3 2 3 1 = 13 3 10 11 a = 13 , b = 3 , c = 10 & d = 11 a + b + c + d = 13 + 3 + 10 + 11 = 37 slope\quad of\quad 2x-3y=5\quad is\quad m=\tan { \theta =\cfrac { 2 }{ 3 } } \\ \\ as\quad ray\quad is\quad turning\quad away\quad by\quad { 15 }^{ o }\quad so\quad slope\quad of\quad refracted\quad ray\quad will\quad be\\ \\ { m }^{ ' }=\tan { (\theta +{ 15 }^{ o })= } \cfrac { \cfrac { 2 }{ 3 } +\left( 2-\sqrt { 3 } \right) }{ 1-\cfrac { 2 }{ 3 } \left( 2-\sqrt { 3 } \right) } \left( as\quad \tan { \theta =\cfrac { 2 }{ 3 } } \& \tan { { 15 }^{ o }=2-\sqrt { 3 } } \right) \\ \\ \quad =\cfrac { 8-3\sqrt { 3 } }{ 2\sqrt { 3 } -1 } =\cfrac {1 3\sqrt { 3 } -10 }{ 11} \\ \\ \Rightarrow a=13,b=3,c=10\& d=11\\ \\ \Rightarrow a+b+c+d=13+3+10+11=37

I've updated the answer format. Can you update the solution accordingly?

Calvin Lin Staff - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...