Reflection across a circular arc

Geometry Level 4

A circular arc E F EF (shown in green) makes a central angle of E O F = 7 0 \angle EOF = 70^{\circ} . O A OA is a line segment containing point E E , and of length 5 5 , and O B OB is a line segment containing point F F , and of length 7 7 , while the radius of the green arc is 2 2 . We want to find point C C on the arc such that a ray A C AC incident on the arc reflects into ray C B CB passing through point B B . That is to say A C D = B C D \angle ACD = \angle BCD . Find C O A \angle COA in degrees.


The answer is 32.38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Oct 11, 2019

Let O ( 0 , 0 ) O(0,0) be the origin of the x y xy -plan, A ( 5 , 0 ) A(5,0) , and B ( 7 cos 7 0 , 7 sin 7 0 ) B(7\cos 70^\circ, 7\sin 70^\circ) . Let the angle to be found C O A = θ \angle COA = \theta . Then C ( 2 cos θ , 2 sin θ ) C (2\cos \theta, 2 \sin \theta) . From

A C D = B C D C O A + C A O = B C E D C E where C E O A θ + tan 1 ( 2 sin θ 5 2 cos θ ) = tan 1 ( 7 sin 7 0 2 sin θ 7 cos 7 0 2 cos θ ) θ Note that D C E = C O A = θ \begin{aligned} \angle ACD & = \angle BCD \\ \angle COA + \angle CAO & = \angle BCE - \angle DCE & \small \blue{\text{where }CE||OA} \\ \theta + \tan^{-1} \left(\frac {2\sin \theta}{5-2\cos \theta}\right) & = \tan^{-1} \left(\frac {7\sin 70^\circ - 2\sin \theta}{7\cos 70^\circ -2\cos \theta}\right) - \theta & \small \blue{\text{Note that }\angle DCE=\angle COA = \theta} \end{aligned}

Solving the above numerically, we have θ 32.3867 \theta \approx \boxed{32.3867} .

Applying Sine Rule to the s \triangle 's A O C AOC and B O D BOD we get 4900 s i n 4 α 1315.5697 s i n 3 α 4508.2343 s i n 2 α + 342.8189 s i n α + 908.6299 = 0 4900sin^4α-1315.5697sin^3α-4508.2343sin^2α+342.8189sinα+908.6299=0 where α α is the required angle. From this we get the value of s i n α sinα in the given region to be equal to 32.3846 \boxed {32.3846}

Steven Chase
Oct 10, 2019

Constants:

θ E O F = 7 0 R = 2 A x = 5 A y = 0 B x = 7 cos θ E O F B y = 7 sin θ E O F θ = C O A \theta_{EOF} = 70^\circ \\ R = 2 \\ A_x = 5 \\ A_y = 0 \\ B_x = 7 \, \cos \theta_{EOF} \\ B_y = 7 \, \sin \theta_{EOF} \\ \theta = \angle C O A

Coordinates of point C C :

C x = R cos θ C y = R sin θ C_x = R \, \cos \theta \\ C_y = R \, \sin \theta

Incident vector from A A to C C :

v x = C x A x v y = C y A y v_x = C_x - A_x \\ v_y = C_y - A_y

Normal and tangent vectors to circle:

N x = cos θ N y = sin θ T x = N y T y = N x N_x = \cos \theta \\ N_y = \sin \theta \\ T_x = -N_y \\ T_y = N_x

Express v \vec{v} in terms of the normal and tangent vectors:

v x = α N x + β T x v y = α N y + β T y v_x = \alpha \, N_x + \beta \, T_x \\ v_y = \alpha \, N_y + \beta \, T_y

Solve the system for ( α , β ) (\alpha,\beta) and construct the reflected vector v 2 \vec{v}_2 :

v 2 x = α N x + β T x v 2 y = α N y + β T y v_{2x} = -\alpha \, N_x + \beta \, T_x \\ v_{2y} = -\alpha \, N_y + \beta \, T_y

Equation of line O B OB :

y = m O B x y = m_{OB} \, x

Trace the reflected ray from point C C until it intersects line O B OB . Determine the travel distance until intersection.

C y + γ v 2 y = m O B ( C x + γ v 2 x ) γ = m O B C x C y v 2 y m O B v 2 x C_y + \gamma \, v_{2y} = m_{OB} (C_x + \gamma \, v_{2x}) \\ \gamma = \frac{m_{OB} C_x - C_y}{v_{2y} - m_{OB} v_{2x}}

Intersection point:

x i = C x + γ v 2 x y i = C y + γ v 2 y x_i = C_x + \gamma \, v_{2x} \\ y_i = C_y + \gamma \, v_{2y}

Sweep the parameter θ \theta and store the value of θ \theta for which the following is true.

x i = B x y i = B y x_i = B_x \\ y_i = B_y

This results in θ 32.3 8 \theta \approx 32.38^\circ

L e t C O A = X . A C D = B C D , s o A C O = B C O = s a y Y . A p p l y i n g C o s R u l e t o Δ s A O C a n d B O C , A C 2 = 25 + 4 2 5 2 C o s X . . . . . . . . . . ( 1 ) B C 2 = 49 + 4 2 7 2 C o s ( 70 X ) . . . . . . ( 2 ) A p p l y i n g S i n R u l e t o Δ s A O C a n d B O C , A C = 5 S i n X / S i n Y . . . . . . . . . . ( 3 ) B C = 7 S i n ( 70 X ) / S i n Y . . . . . . . . . . ( 4 ) S u b t r a c t i n g S i n Y o f ( 2 ) a n d ( 4 ) f r o m S i n Y o f ( 1 ) a n d ( 3 ) , ( 5 S i n X ) 2 / ( 29 2 5 2 C o s X ) ( 7 S i n ( 70 X ) 2 / ( 51 2 7 2 C o s ( 70 X ) ) = 0 S o l v i n g t h r o u g h K e i s a n O n l i n e C a l c u l a t o r X = 20 t o 60 , a n d r e f i n i n g , w e g e t C O A = 32.38672. Let ~\angle COA=X.\\ \angle ACD = \angle BCD,~~so~ \angle ACO = \angle BCO= say~ Y.\\ ~~~\\ Applying~Cos~Rule~to~\Delta~s~~AOC~~and~~BOC, \\ AC^2=25+4-2*5*2*CosX..........(1)\\ BC^2=49+4-2*7*2*Cos(70-X)......(2)\\ ~~~~\\ Applying~Sin~Rule~to~\Delta~s~~AOC~~and~~BOC, \\ AC=5* SinX/SinY ..........(3) \\ BC=7*Sin(70-X)/ SinY ..........(4) \\ ~~~\\ Subtracting~SinY~~of~(2)~and~(4) ~~from~~ SinY~~of~(1)~and~(3),\\ (5*SinX)^2/(29-2*5*2*CosX) - (7*Sin(70-X)^2/(51-2*7*2*Cos(70-X))=0 \\ ~~\\ Solving~through~ Keisan ~Online~ Calculator ~ X=20~to~60, ~and ~refining, \\ we~get~\angle COA=\Large~\color{#D61F06}{32.38672}.

Hosam Hajjir
Oct 11, 2019

Let ϕ = E O F = 7 0 \phi = \angle EOF = 70^{\circ} , and let θ = C O A \theta = \angle COA . Also, let Ψ = O C A = O C B \Psi = \angle OCA = \angle OCB (because A C D = B C D \angle ACD = \angle BCD ). Further, let a = O A , b = O B , r = O C a = OA , b = OB, r = OC

Using the Law of Sines in A O C \triangle AOC , we obtain,

sin Ψ a = sin ( π θ Ψ ) r = sin ( Ψ + θ ) r \dfrac{\sin \Psi}{a} = \dfrac{ \sin( \pi - \theta - \Psi ) }{ r } =\dfrac{ \sin( \Psi +\theta ) }{ r }

Similarly, using the Law of Sines in B O C \triangle BOC , we obtain,

sin Ψ b = sin ( Ψ + ϕ θ ) r \dfrac{\sin \Psi}{b} = \dfrac{ \sin( \Psi + \phi - \theta ) }{ r }

After some simple manipulation, the above two equations can be solved for tan Ψ \tan \Psi , and from the first equation we obtain,

tan Ψ = a sin θ r a cos θ \tan \Psi = \dfrac{ a \sin \theta }{ r - a \cos \theta }

Similarly, the second equation yields,

tan Ψ = b sin ( ϕ θ ) r b cos ( ϕ θ ) \tan \Psi = \dfrac{ b \sin(\phi - \theta) }{ r - b \cos(\phi - \theta) }

Equating the two expressions and cross multiplying, gives,

a sin θ ( r b cos ( ϕ θ ) ) = b sin ( ϕ θ ) ( r a cos θ ) a \sin \theta (r - b \cos(\phi - \theta) ) = b \sin(\phi - \theta) ( r - a \cos \theta )

Expanding cos ( ϕ θ ) \cos( \phi - \theta ) and sin ( ϕ θ ) \sin ( \phi - \theta ) , the above equation becomes,

a sin θ ( r b cos ϕ cos θ b sin ϕ sin θ ) = b ( sin ϕ cos θ cos ϕ sin θ ) ( r a cos θ ) a \sin \theta (r - b \cos \phi \cos \theta - b \sin \phi \sin \theta ) = b (\sin \phi \cos \theta - \cos \phi \sin \theta ) ( r - a \cos \theta )

Muliplying the expressions out yields,

a r sin θ a b cos ϕ sin θ cos θ a b sin ϕ sin 2 θ = b r sin ϕ cos θ b r cos ϕ sin θ a b sin ϕ cos 2 θ + a b cos ϕ sin θ cos θ a r \sin \theta - a b \cos \phi \sin \theta \cos \theta - a b \sin \phi \sin^2 \theta = b r \sin \phi \cos \theta - b r \cos \phi \sin \theta - a b \sin \phi \cos^2 \theta + a b \cos \phi \sin \theta \cos \theta

Collecting terms, and using the identities cos 2 θ = cos 2 θ sin 2 θ \cos 2 \theta = \cos^2 \theta - \sin^2 \theta and sin 2 θ = 2 sin θ cos θ \sin 2 \theta = 2 \sin \theta \cos \theta , we arrive at,

( b r sin ϕ ) cos θ + ( a r b r cos ϕ ) sin θ + ( a b sin ϕ ) cos 2 θ + ( a b cos ϕ ) sin 2 θ = 0 (b r \sin \phi ) \cos \theta + (- a r - b r \cos \phi) \sin \theta + (-a b \sin \phi )\cos 2 \theta + (a b \cos \phi) \sin 2 \theta = 0

To solve this equation, the reader is referred to the results of this problem or, one can find the solution by a numerical root-finding algorithm (e.g. Newton's method).

The solution is θ = 0.565255 = 32.3 8 \theta = 0.565255 = 32.38^{\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...