Reflection of a point about the line y = 2 x y = 2 x

Calculus Level pending

What are the coordinates of the reflection of a point ( a , b ) (a, b) about the line y = 2 x y = 2 x ?

( 3 a + 4 b 5 , 4 a + 3 b 5 ) \displaystyle \left( \dfrac{-3 a + 4 b}{5} , \dfrac{4 a + 3 b}{5} \right) ( 3 a 4 b 5 , 3 a + 4 b 5 ) \displaystyle \left( \dfrac{3 a - 4 b}{5} , \dfrac{3 a + 4 b}{5} \right) ( 3 a + 4 b 5 , 4 a + 3 b 5 ) \displaystyle \left( \dfrac{3 a + 4 b}{5} , \dfrac{4 a + 3 b}{5} \right) ( a 2 b 5 , 2 a + b 5 ) \displaystyle \left( \dfrac{ a - 2 b}{5} , \dfrac{2 a + b}{5} \right) ( a + 2 b 5 , 2 a + b 5 ) \displaystyle \left( \dfrac{- a + 2 b}{5} , \dfrac{2 a + b}{5} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tom Engelsman
May 19, 2021

The reflection point of P ( a , b ) P(a,b) , call it P ( a , b ) P'(a',b') , must lie on a line that is normal to y = 2 x y=2x . Let this line equal to:

y b = 1 2 ( x a ) y = 1 2 x + a + 2 b 2 \large y-b = -\frac{1}{2}(x-a) \Rightarrow y = -\frac{1}{2}x + \frac{a+2b}{2}

which intersects y = 2 x y=2x in the point Q ( x , y ) Q(x,y) :

2 x = 1 2 x + a + 2 b 2 x = a + 2 b 5 , y = 2 a + 4 b 5 \large 2x =-\frac{1}{2}x + \frac{a+2b}{2} \Rightarrow x = \frac{a+2b}{5}, y = \frac{2a+4b}{5} . If Q Q is the midpoint of P P and P P' , then we have:

a + a 2 = a + 2 b 5 a = 3 a + 4 b 5 \large \frac{a+a'}{2} = \frac{a+2b}{5} \Rightarrow a' = \frac{-3a+4b}{5} ;

b + b 2 = 2 a + 4 b 5 b = 4 a + 3 b 5 \large \frac{b+b'}{2} = \frac{2a+4b}{5} \Rightarrow b' = \frac{4a+3b}{5}

Hence, the reflection point P P' has coordinates x = 3 a + 4 b 5 , y = 4 a + 3 b 5 , \boxed{x = \frac{-3a+4b}{5}, y = \frac{4a+3b}{5}}, or Choice A.

Kris Hauchecorne
May 20, 2021

The reflection has eigenvectors (1, 2) with eigenvalue sqrt(5) and (-2, 1) with -sqrt(5).

Matrix A=P. D. P^(-1) and A.(a, b) yields to the solution.

Actually, the eigenvalues are + 1 +1 and 1 -1 respectively.

Hosam Hajjir - 3 weeks, 2 days ago

You're right. I must have somehow along the way corrected for the error. Interesting. I'm happy the method still works nicely though.

Kris Hauchecorne - 3 weeks, 1 day ago
Hosam Hajjir
May 20, 2021

The standard way to solve this type of problem is through linear algebra.

The image p \mathbf{p'} of a point p \mathbf{p} under a reflection across the line n T ( r r 0 ) = 0 \mathbf{n}^T (\mathbf{r} - \mathbf{r}_0) = 0 is given by

p = r 0 + M ( p r 0 ) \mathbf{p'} = \mathbf{r}_0 + \mathbf{M} (\mathbf{p} - \mathbf{r}_0)

where the reflection matrix M = I 2 n n T n T n \mathbf{M} = \mathbf{I} - 2 \hspace{4pt} \dfrac{\mathbf{n} \mathbf{n}^T }{ \mathbf{n}^T \mathbf{n} }

In this problem, the reflection line is y = 2 x y = 2 x , so in standard form, it is given by 2 x y = 0 2 x - y = 0 , thus r 0 = ( 0 , 0 ) \mathbf{r}_0 = (0, 0) and n = ( 2 , 1 ) \mathbf{n} = (2, -1)

The reflection matrix is, therefore,

M = [ 1 0 0 1 ] 2 2 2 + ( 1 ) 2 [ 2 1 ] [ 2 1 ] \mathbf{M} = \begin{bmatrix} 1 && 0 \\ 0 && 1 \end{bmatrix} - \dfrac{2}{2^2 + (-1)^2 } \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2 && -1 \end{bmatrix}

Simplifying,

M = [ 1 0 0 1 ] 2 5 [ 4 2 2 1 ] \mathbf{M} = \begin{bmatrix} 1 && 0 \\ 0 && 1 \end{bmatrix} - \dfrac{2}{5 } \begin{bmatrix} 4 && -2 \\ -2 && 1 \end{bmatrix}

Which becomes,

M = 1 5 [ 3 4 4 3 ] \mathbf{M} = \displaystyle \dfrac{1}{5} \begin{bmatrix} -3 && 4 \\ 4 && 3 \end{bmatrix}

With r 0 = 0 \mathbf{r}_0 = \mathbf{0} , the reflection relation becomes

p = M p \mathbf{p'} = \mathbf{M} \mathbf{p}

Since p = ( a , b ) \mathbf{p} = (a, b) , then p = ( 3 a + 4 b 5 , 4 a + 3 b 5 ) \mathbf{p'} = \left( \dfrac{-3 a + 4 b}{5} , \dfrac{4 a + 3 b }{5} \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...