Reflection of a point across the plane 5 x 3 y + 2 z = 10 5 x - 3 y + 2 z = 10

Geometry Level 4

The coordinates of the reflection of a point p \mathbf{p} across the plane 5 x 3 y + 2 z = 10 5 x - 3 y + 2 z = 10 are given by

p = M p + v \mathbf{p'} = \mathbf{M} \mathbf{p} + \mathbf{v}

where

M = 1 g [ a b c b d e c e f ] , v = 1 g [ h i j ] \mathbf{M} = \dfrac{1}{g} \begin{bmatrix} a && b && c \\ b && d && e \\ c && e && f \end{bmatrix} , \hspace{36pt} \mathbf{v} = \dfrac{1}{g} \begin{bmatrix} h \\ i \\ j \end{bmatrix}

where a , b , c , d , e , f , g , h , i , k a, b, c, d, e, f, g, h, i, k are integers, and g > 0 g \gt 0 is prime.

Find a + b + c + d + e + f + g + h + i + j a + b + c + d + e + f + g + h + i + j

Details and Assumptions:

  • The coordinate vectors of p \mathbf{p} and p \mathbf{p'} are considered 3 × 1 3 \times 1 column vectors.


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
May 21, 2021

Let p = ( p 1 , p 2 , p 3 ) \mathbf{p} = (p_1, p_2, p_3) and p = ( p 1 , p 2 , p 3 ) \mathbf{p'} = (p_1', p_2', p_3') .

The midpoint of p \mathbf{p} and p \mathbf{p'} lies on the plane, so 5 ( p 1 + p 1 2 ) 3 ( p 2 + p 2 2 ) + 2 ( p 3 + p 3 2 ) = 10 5\bigg(\cfrac{p_1 + p_1'}{2}\bigg) - 3\bigg(\cfrac{p_2 + p_2'}{2}\bigg) + 2\bigg(\cfrac{p_3 + p_3'}{2}\bigg) = 10 , or:

5 ( p 1 + p 1 ) 3 ( p 2 + p 2 ) + 2 ( p 3 + p 3 ) = 20 5(p_1 + p_1') - 3(p_2 + p_2') + 2(p_3 + p_3') = 20

p p \overrightarrow{\mathbf{p'p}} is the same direction as the normal of the equation, which is ( 5 , 3 , 2 ) (5, -3, 2) , so p 1 p 1 = 5 k p_1 - p_1' = 5k , p 2 p 2 = 3 k p_2 - p_2' = -3k , and p 3 p 3 = 2 k p_3 - p_3' = 2k for some constant k k , so 5 ( p 1 p 1 ) 3 ( p 2 p 2 ) + 2 ( p 3 p 3 ) = 25 k + 9 k + 4 k 5(p_1 - p_1') - 3(p_2 - p_2') + 2(p_3 - p_3') = 25k + 9k + 4k , or:

5 ( p 1 p 1 ) 3 ( p 2 p 2 ) + 2 ( p 3 p 3 ) = 38 k 5(p_1 - p_1') - 3(p_2 - p_2') + 2(p_3 - p_3') = 38k

Adding these two equations gives 10 p 1 6 p 2 + 4 p 3 = 20 + 38 k 10p_1 - 6p_2 + 4p_3 = 20 + 38k , which rearranges to k = 1 19 ( 5 p 1 3 p 2 + 2 p 3 10 ) k = \frac{1}{19}(5p_1 - 3p_2 + 2p_3 - 10) .

Then:

p 1 p 1 = 5 k p_1 - p_1' = 5k rearranges to p 1 = p 1 5 k = p 1 5 1 19 ( 5 p 1 3 p 2 + 2 p 3 10 ) p_1' = p_1 - 5k = p_1 - 5 \cdot \frac{1}{19}(5p_1 - 3p_2 + 2p_3 - 10) or p 1 = 1 19 ( 6 p 1 + 15 p 2 10 p 3 ) + 1 19 ( 50 ) p_1' = \frac{1}{19}(-6p_1 + 15p_2 - 10p_3) + \frac{1}{19}(50)

p 2 p 2 = 3 k p_2 - p_2' = -3k rearranges to p 2 = p 2 5 k = p 2 + 3 1 19 ( 5 p 1 3 p 2 + 2 p 3 10 ) p_2' = p_2 - 5k = p_2 + 3 \cdot \frac{1}{19}(5p_1 - 3p_2 + 2p_3 - 10) or p 2 = 1 19 ( 15 p 1 + 10 p 2 + 6 p 3 ) + 1 19 ( 30 ) p_2' = \frac{1}{19}(15p_1 + 10p_2 + 6p_3) + \frac{1}{19}(-30)

p 3 p 3 = 2 k p_3 - p_3' = 2k rearranges to p 3 = p 3 5 k = p 3 2 1 19 ( 5 p 1 3 p 2 + 2 p 3 10 ) p_3' = p_3 - 5k = p_3 - 2 \cdot \frac{1}{19}(5p_1 - 3p_2 + 2p_3 - 10) or p 3 = 1 19 ( 10 p 1 + 6 p 2 + 15 p 3 ) + 1 19 ( 20 ) p_3' = \frac{1}{19}(-10p_1 + 6p_2 + 15p_3) + \frac{1}{19}(20)

which means:

p = 1 19 [ 6 15 10 15 10 6 10 6 15 ] p + 1 19 [ 50 30 20 ] \mathbf{p'} = \cfrac{1}{19} \begin{bmatrix} -6 & 15 & -10 \\ 15 & 10 & 6 \\ -10 & 6 & 15 \end{bmatrix} \mathbf{p} + \cfrac{1}{19} \begin{bmatrix} 50 \\ -30 \\ 20 \end{bmatrix}

so that a = 6 a = -6 , b = 15 b = 15 , c = 10 c = -10 , d = 10 d = 10 , e = 6 e = 6 , f = 15 f = 15 , g = 19 g = 19 , h = 50 h = 50 , i = 30 i = -30 , j = 20 j = 20 , and a + b + c + d + e + f + g + h + i + j = 89 a + b + c + d + e + f + g + h + i + j = \boxed{89} .

Hosam Hajjir
May 21, 2021

The image p \mathbf{p'} of a point p \mathbf{p} under a reflection across the plane n T ( r r 0 ) = 0 \mathbf{n}^T (\mathbf{r} - \mathbf{r}_0) = 0 is given by

p = r 0 + M ( p r 0 ) = M p + r 0 M r 0 \mathbf{p'} = \mathbf{r}_0 + \mathbf{M} (\mathbf{p} - \mathbf{r}_0) = \mathbf{M} \mathbf{p} + \mathbf{r}_0 - \mathbf{M} \mathbf{r}_0

where the reflection matrix M = I 2 n n T n T n \mathbf{M} = \mathbf{I} - 2 \hspace{4pt} \dfrac{\mathbf{n} \mathbf{n}^T }{ \mathbf{n}^T \mathbf{n} }

In this problem, the reflection plane is 5 x 3 y + 2 z = 10 5x - 3y + 2z = 10 , therefore, n = ( 5 , 3 , 2 ) \mathbf{n} = (5, -3, 2 ) , and we can take r 0 = ( 0 , 0 , 5 ) \mathbf{r}_0 = (0, 0, 5)

The reflection matrix is, therefore,

M = [ 1 0 0 0 1 0 0 0 1 ] 2 5 2 + ( 3 ) 2 + 2 2 [ 5 3 2 ] [ 5 3 2 ] \mathbf{M} = \begin{bmatrix} 1 && 0 && 0\\ 0 && 1 && 0 \\ 0 && 0 && 1 \end{bmatrix} - \dfrac{2}{5^2 + (-3)^2 + 2^2 } \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} \begin{bmatrix} 5 && -3 && 2 \end{bmatrix}

Simplifying,

M = [ 1 0 0 0 1 0 0 0 1 ] 1 19 [ 25 15 10 15 9 6 10 6 4 ] \mathbf{M} = \begin{bmatrix} 1 && 0 && 0 \\ 0 && 1 && 0 \\ 0 && 0 && 1 \end{bmatrix} - \dfrac{1}{19} \begin{bmatrix} 25 && -15 && 10 \\ -15 && 9 && - 6 \\10 && - 6 && 4 \end{bmatrix}

Which becomes,

M = 1 19 [ 6 15 10 15 10 6 10 6 15 ] \mathbf{M} = \dfrac{1}{19} \begin{bmatrix} -6 && 15 && - 10 \\ 15 && 10 && 6 \\ -10 && 6 && 15 \end{bmatrix}

Vector v = r 0 M r 0 \mathbf{v} = \mathbf{r}_0 - \mathbf{M} \mathbf{r}_0 , that is,

v = [ 0 0 5 ] 1 19 [ 6 15 10 15 10 6 10 6 15 ] [ 0 0 5 ] \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} - \dfrac{1}{19} \begin{bmatrix} -6 && 15 && - 10 \\ 15 && 10 && 6 \\ -10 && 6 && 15 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}

and this evaluates to,

v = 1 19 [ 50 30 20 ] \mathbf{v} = \dfrac{1}{19} \begin{bmatrix} 50 \\ -30 \\ 20 \end{bmatrix}

The required sum is therefore,

( 6 ) + 15 + ( 10 ) + 10 + 6 + 15 + 19 + 50 + ( 30 ) + 20 = 89 (-6) + 15 + (-10) + 10 + 6 + 15 + 19 + 50 + (-30) + 20 = \boxed{89}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...