The coordinates of the reflection of a point p across the plane 5 x − 3 y + 2 z = 1 0 are given by
p ′ = M p + v
where
M = g 1 ⎣ ⎡ a b c b d e c e f ⎦ ⎤ , v = g 1 ⎣ ⎡ h i j ⎦ ⎤
where a , b , c , d , e , f , g , h , i , k are integers, and g > 0 is prime.
Find a + b + c + d + e + f + g + h + i + j
Details and Assumptions:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The image p ′ of a point p under a reflection across the plane n T ( r − r 0 ) = 0 is given by
p ′ = r 0 + M ( p − r 0 ) = M p + r 0 − M r 0
where the reflection matrix M = I − 2 n T n n n T
In this problem, the reflection plane is 5 x − 3 y + 2 z = 1 0 , therefore, n = ( 5 , − 3 , 2 ) , and we can take r 0 = ( 0 , 0 , 5 )
The reflection matrix is, therefore,
M = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ − 5 2 + ( − 3 ) 2 + 2 2 2 ⎣ ⎡ 5 − 3 2 ⎦ ⎤ [ 5 − 3 2 ]
Simplifying,
M = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ − 1 9 1 ⎣ ⎡ 2 5 − 1 5 1 0 − 1 5 9 − 6 1 0 − 6 4 ⎦ ⎤
Which becomes,
M = 1 9 1 ⎣ ⎡ − 6 1 5 − 1 0 1 5 1 0 6 − 1 0 6 1 5 ⎦ ⎤
Vector v = r 0 − M r 0 , that is,
v = ⎣ ⎡ 0 0 5 ⎦ ⎤ − 1 9 1 ⎣ ⎡ − 6 1 5 − 1 0 1 5 1 0 6 − 1 0 6 1 5 ⎦ ⎤ ⎣ ⎡ 0 0 5 ⎦ ⎤
and this evaluates to,
v = 1 9 1 ⎣ ⎡ 5 0 − 3 0 2 0 ⎦ ⎤
The required sum is therefore,
( − 6 ) + 1 5 + ( − 1 0 ) + 1 0 + 6 + 1 5 + 1 9 + 5 0 + ( − 3 0 ) + 2 0 = 8 9
Problem Loading...
Note Loading...
Set Loading...
Let p = ( p 1 , p 2 , p 3 ) and p ′ = ( p 1 ′ , p 2 ′ , p 3 ′ ) .
The midpoint of p and p ′ lies on the plane, so 5 ( 2 p 1 + p 1 ′ ) − 3 ( 2 p 2 + p 2 ′ ) + 2 ( 2 p 3 + p 3 ′ ) = 1 0 , or:
5 ( p 1 + p 1 ′ ) − 3 ( p 2 + p 2 ′ ) + 2 ( p 3 + p 3 ′ ) = 2 0
p ′ p is the same direction as the normal of the equation, which is ( 5 , − 3 , 2 ) , so p 1 − p 1 ′ = 5 k , p 2 − p 2 ′ = − 3 k , and p 3 − p 3 ′ = 2 k for some constant k , so 5 ( p 1 − p 1 ′ ) − 3 ( p 2 − p 2 ′ ) + 2 ( p 3 − p 3 ′ ) = 2 5 k + 9 k + 4 k , or:
5 ( p 1 − p 1 ′ ) − 3 ( p 2 − p 2 ′ ) + 2 ( p 3 − p 3 ′ ) = 3 8 k
Adding these two equations gives 1 0 p 1 − 6 p 2 + 4 p 3 = 2 0 + 3 8 k , which rearranges to k = 1 9 1 ( 5 p 1 − 3 p 2 + 2 p 3 − 1 0 ) .
Then:
p 1 − p 1 ′ = 5 k rearranges to p 1 ′ = p 1 − 5 k = p 1 − 5 ⋅ 1 9 1 ( 5 p 1 − 3 p 2 + 2 p 3 − 1 0 ) or p 1 ′ = 1 9 1 ( − 6 p 1 + 1 5 p 2 − 1 0 p 3 ) + 1 9 1 ( 5 0 )
p 2 − p 2 ′ = − 3 k rearranges to p 2 ′ = p 2 − 5 k = p 2 + 3 ⋅ 1 9 1 ( 5 p 1 − 3 p 2 + 2 p 3 − 1 0 ) or p 2 ′ = 1 9 1 ( 1 5 p 1 + 1 0 p 2 + 6 p 3 ) + 1 9 1 ( − 3 0 )
p 3 − p 3 ′ = 2 k rearranges to p 3 ′ = p 3 − 5 k = p 3 − 2 ⋅ 1 9 1 ( 5 p 1 − 3 p 2 + 2 p 3 − 1 0 ) or p 3 ′ = 1 9 1 ( − 1 0 p 1 + 6 p 2 + 1 5 p 3 ) + 1 9 1 ( 2 0 )
which means:
p ′ = 1 9 1 ⎣ ⎡ − 6 1 5 − 1 0 1 5 1 0 6 − 1 0 6 1 5 ⎦ ⎤ p + 1 9 1 ⎣ ⎡ 5 0 − 3 0 2 0 ⎦ ⎤
so that a = − 6 , b = 1 5 , c = − 1 0 , d = 1 0 , e = 6 , f = 1 5 , g = 1 9 , h = 5 0 , i = − 3 0 , j = 2 0 , and a + b + c + d + e + f + g + h + i + j = 8 9 .