Reflection over a line

Geometry Level 4

Find the reflection of the point ( 3 , 5 , 2 ) (-3,5,2) over the line x 3 = y 4 2 = z 1 2 x-3 = \dfrac{y-4}{2} = \dfrac{z-1}{2} . If the new point is of the form ( a , b , c ) (a,b,c) , then give your answer as 9 ( a + b + c ) 9(a+b+c) .


The answer is 88.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the line be ( t ) = a + t v ^ \vec{\ell}(t)=\vec{a}+t\hat{v} , where a \vec{a} is one initial point, v ^ \hat{v} a unit parallel vector, and P \vec{P} the point we will reflect.

We will project the vector P a \vec{P}-\vec{a} in the line and call it u \vec{u} : u = ( ( P a ) v ^ ) v ^ \vec{u}=\left(\left(\vec{P}-\vec{a}\right) \cdot \hat{v}\right)\hat{v} Now let d \vec{d} the perpendicular vector from P \vec{P} to the line: d = u ( P a ) = u + a P \vec{d}=\vec{u}-\left(\vec{P}-\vec{a}\right)=\vec{u}+\vec{a}-\vec{P} So, the new point P \vec{P'} can be obtained if we add two times the vector d \vec{d} to the point P \vec{P} : P = P + 2 d \vec{P'} = \vec{P} + 2\vec{d} Finally, putting all together: P = P + 2 ( u + a P ) P = 2 a P + 2 ( ( P a ) v ^ ) v ^ \vec{P'} = \vec{P} + 2\left(\vec{u}+\vec{a}-\vec{P}\right) \\ \vec{P'} = 2\vec{a}-\vec{P}+2\left(\left(\vec{P}-\vec{a}\right) \cdot \hat{v}\right)\hat{v} In this case a = ( 3 , 4 , 1 ) \vec{a}=(3,4,1) , v ^ = 1 3 ( 1 , 2 , 2 ) \hat{v}=\dfrac{1}{3}(1,2,2) and P = ( 3 , 5 , 2 ) \vec{P}=(-3,5,2) , so the new point will be P = 1 9 ( 77 , 19 , 8 ) \vec{P'}=\dfrac{1}{9}(77,19,-8) , making the answer 88 \boxed{88} .

Akshat Sharda
Jan 8, 2018

Let P ( k + 3 , 2 k + 4 , 2 k + 1 ) P(k+3,2k+4,2k+1) be the foot of perpendicular on the given line from point A ( 3 , 5 , 2 ) A(-3,5,2) and v = i ^ + 2 j ^ + 2 k ^ \vec{v}=\hat{i}+2\hat{j}+2\hat{k} be a vector parallel to the line.

A P . v = 0 k = 2 9 P ( 25 9 , 32 9 , 5 9 ) \vec{AP}.\vec{v}=0\Rightarrow k=\frac{-2}{9} \therefore P (\frac{25}{9},\frac{32}{9},\frac{5}{9})

Now, we can see that P P is the mid point of A A and its image. Therefore, ( a , b , c ) ( 77 9 , 19 9 , 8 9 ) (a,b,c)\equiv(\frac{77}{9},\frac{19}{9},-\frac{8}{9})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...