Refractive index, not indices

Algebra Level 2

If we are given that a > b a > b and that a = 1 b a = \frac 1b , find the value a a if a + b = 25 12 a + b = \frac{25}{12} .

4/3 1.25 1.667 3/4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Inderjeet Nair
Jan 10, 2015

B y u s i n g t h e f a c t t h a t 1 η 2 × 2 η 1 = 1 2 η 1 = 1 / 1 η 2 S u b s t i t u t i n g t h e v a l u e i n t h e g i v e n e q u a t i o n 1 η 2 + 1 / 1 η 2 = 25 / 12 1 η 2 = 4 / 3 o r 1 η 2 = 3 / 4 b u t i t c a n n o t b e 3 / 4 1 η 2 b e c o m e s l e s s t h a n 2 η 1 b u t 1 η 2 > 2 η 1 1 η 2 = 4 / 3 By\quad using\quad the\quad fact\quad that\\ { _{ 1 }{ \eta }_{ 2 } }\times { _{ 2 }{ \eta }_{ 1 } }=1\\ \therefore { _{ 2 }{ \eta }_{ 1 } }=1/{ _{ 1 }{ \eta }_{ 2 } }\\ Substituting\quad the\quad value\quad in\quad the\quad given\quad equation\\ { _{ 1 }{ \eta }_{ 2 } }+1/{ _{ 1 }{ \eta }_{ 2 } }=25/12\\ \therefore { _{ 1 }{ \eta }_{ 2 } }=4/3\quad or{ _{ 1 }{ \eta }_{ 2 } }=3/4\\ but\quad it\quad cannot\quad be\quad 3/4\quad \because \quad { _{ 1 }{ \eta }_{ 2 } }\quad becomes\quad less\quad than\quad { _{ 2 }{ \eta }_{ 1 } }\\ but\quad { _{ 1 }{ \eta }_{ 2 } }>{ _{ 2 }{ \eta }_{ 1 } }\\ \therefore \quad { _{ 1 }{ \eta }_{ 2 } }=4/3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...